Circular Orbits (circular + orbit)

Distribution by Scientific Domains


Selected Abstracts


Image reconstruction with a shift-variant filtration in circular cone-beam CT,

INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, Issue 5 2004
Lifeng Yu
Abstract It is well known that cone-beam data acquired with a circular orbit are insufficient for exact image reconstruction. Despite this, because a cone-beam scanning configuration with a circular orbit is easy to implement in practice, it has been widely employed for data acquisition in, e.g., micro-CT and CT imaging in radiation therapy. The algorithm developed by Feldkamp, Davis, and Kress (FDK) and its modifications, such as the Tent,FDK (T-FDK) algorithm, have been used for image reconstruction from circular cone-beam data. In this work, we present an algorithm with spatially shift-variant filtration for image reconstruction in circular cone-beam CT. We performed computer-simulation studies to compare the proposed and existing algorithms. Numerical results in these studies demonstrated that the proposed algorithm has resolution properties comparable to, and noise properties better than, the FDK algorithm. As compared to the T-FDK algorithm, our proposed algorithm reconstructs images with an improved in-plane spatial resolution. © 2005 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 14, 213,221, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20026 [source]


Where is the radiation edge in magnetized black hole accretion discs?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
Kris Beckwith
ABSTRACT General relativistic (GR) magnetohydrodynamic (MHD) simulations of black hole accretion find significant magnetic stresses near and inside the innermost stable circular orbit (ISCO), suggesting that such flows could radiate in a manner noticeably different from the prediction of the standard model, which assumes that there are no stresses in that region. We provide estimates of how phenomenologically interesting parameters like the ,radiation edge', the innermost ring of the disc from which substantial thermal radiation escapes to infinity, may be altered by stresses near the ISCO. These estimates are based on data from a large number of three-dimensional GRMHD simulations combined with GR ray tracing. For slowly spinning black holes (a/M < 0.9), the radiation edge lies well inside where the standard model predicts, particularly when the system is viewed at high inclination. For more rapidly spinning black holes, the contrast is smaller. At fixed total luminosity, the characteristic temperature of the accretion flow increases between a factor of 1.2 and 2.4 over that predicted by the standard model, whilst at fixed mass accretion rate, there is a corresponding enhancement of the accretion luminosity which may be anywhere from tens of per cent to order unity. When all these considerations are combined, we find that, for fixed black hole mass, luminosity and inclination angle, our uncertainty in the characteristic temperature of the radiation reaching distant observers due to uncertainty in dissipation profile (around a factor of 3) is greater than the uncertainty due to a complete lack of knowledge of the black hole's spin (around a factor of 2) and furthermore that spin estimates based on the stress-free inner boundary condition provide an upper limit to a/M. [source]


Ground-based detection of thermal emission from the exoplanet WASP-19b,

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2010
N. P. Gibson
ABSTRACT We present an occultation of the newly discovered hot Jupiter system WASP-19, observed with the High Acuity Wide-field K -band Imager instrument on the VLT, in order to measure thermal emission from the planet's dayside at ,2 ,m. The light curve was analysed using a Markov Chain Monte Carlo method to find the eclipse depth and the central transit time. The transit depth was found to be 0.366 ± 0.072 per cent, corresponding to a brightness temperature of 2540 ± 180 K. This is significantly higher than the calculated (zero-albedo) equilibrium temperature and indicates that the planet shows poor redistribution of heat to the night side, consistent with models of highly irradiated planets. Further observations are needed to confirm the existence of a temperature inversion and possibly molecular emission lines. The central eclipse time was found to be consistent with a circular orbit. [source]


Review of the population of impactors and the impact cratering rate in the inner solar system

METEORITICS & PLANETARY SCIENCE, Issue 11 2007
Patrick Michel
The best witness of these events is the lunar surface, which kept the memory of the impacts that it underwent during the last 3.8 Gyr. In this paper, we review the recent studies at the origin of a reliable model of the impactor population in the inner solar system, namely the near-Earth object (NEO) population. Then we briefly expose the scaling laws used to relate a crater diameter to body size. The model of the NEO population and its impact frequency on terrestrial planets is consistent with the crater distribution on the lunar surface when appropriate scaling laws are used. Concerning the early phases of our solar system's history, a scenario has recently been proposed that explains the origin of the Late Heavy Bombardment (LHB) and some other properties of our solar system. In this scenario, the four giant planets had initially circular orbits, were much closer to each other, and were surrounded by a massive disk of planetesimals. Dynamical interactions with this disk destabilized the planetary system after 500,600 Myr. Consequently, a large portion of the planetesimal disk, as well as 95% of the Main Belt asteroids, were sent into the inner solar system, causing the LHB while the planets reached their current orbits. Our knowledge of solar system evolution has thus improved in the last decade despite our still-poor understanding of the complex cratering process. [source]


3D models of radiatively driven colliding winds in massive O + O star binaries , III.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
Thermal X-ray emission
ABSTRACT The X-ray emission from the wind,wind collision in short-period massive O + O star binaries is investigated. The emission is calculated from 3D hydrodynamical models which incorporate gravity, the driving of the winds, orbital motion of the stars and radiative cooling of the shocked plasma. Changes in the amount of stellar occultation and circumstellar attenuation introduce phase-dependent X-ray variability in systems with circular orbits, while strong variations in the intrinsic emission also occur in systems with eccentric orbits. The X-ray emission in eccentric systems can display strong hysteresis, with the emission softer after periastron than at corresponding orbital phases prior to periastron, reflecting the physical state of the shocked plasma at these times. Our simulated X-ray light curves bear many similarities to observed light curves. In systems with circular orbits the light curves show two minima per orbit, which are identical (although not symmetric) if the winds are identical. The maxima in the light curves are produced near quadrature, with a phase delay introduced due to the aberration and curvature of the wind collision region. Circular systems with unequal winds produce minima of different depths and duration. In systems with eccentric orbits the maxima in the light curves may show a very sharp peak (depending on the orientation of the observer), followed by a precipitous drop due to absorption and/or cooling. We show that the rise to maximum does not necessarily follow a 1/dsep law. Our models further demonstrate that the effective circumstellar column can be highly energy dependent. Therefore, spectral fits which assume energy-independent column(s) are overly simplified and may compromise the interpretation of observed data. To better understand observational analyses of such systems we apply Chandra and Suzaku response files, plus Poisson noise, to the spectra calculated from our simulations and fit these using standard xspec models. We find that the recovered temperatures from two- or three-temperature mekal fits are comparable to those from fits to the emission from real systems with similar stellar and orbital parameters/nature. We also find that when the global abundance is thawed in the spectral fits, subsolar values are exclusively returned, despite the calculations using solar values as input. This highlights the problem of fitting oversimplified models to data, and of course is of wider significance than just the work presented here. Further insight into the nature of the stellar winds and the wind,wind collision region in particular systems will require dedicated hydrodynamical modelling, the results of which will follow in due course. [source]


Equilibrium states of magnetized toroid,central compact object systems

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009
Jun Otani
ABSTRACT Equilibrium configurations of self-gravitating magnetized toroid,central compact object systems have been constructed in the framework of the Newtonian gravity. We have succeeded in including not only poloidal but also toroidal magnetic fields under the ideal magnetohydrodynamic approximation. We find two new and interesting results about the critical equilibrium states of such systems beyond which no equilibrium states are allowed to exist. First, there appear critical distances from the central compact objects to the inner surfaces of the magnetized toroids. Furthermore, these critical distances are much larger than the distances of the innermost stable circular orbits. It implies that even if these systems would be treated in the framework of general relativity, there would appear cusp structures of the effective total potential of the gravitational and magnetic forces for strongly magnetized toroids which are different from the general relativistic cusp structures. Secondly, since the strength of the magnetic field for the critical equilibrium configurations is roughly 1015 G if the mass of the central object is 1.4 M, and the maximum density of the toroid is 1011 g cm,3, the existence of equilibrium states of toroids around compact objects seems to set limit to the maximum value of the magnetic field of the system to be ,1015 G, i.e. no stronger magnetic fields can be realized for the systems consisting of magnetized toroids and central compact objects with the masses around the typical neutron star mass. The value of the maximum density of the toroid, 1011 g cm,3, is taken from the theoretical computational results of binary neutron star merging simulations in full general relativity. [source]


Tracing intermediate-mass black holes in the Galactic Centre

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
U. Löckmann
ABSTRACT We have developed a new method for post-Newtonian, high-precision integration of stellar systems containing a super-massive black hole (SMBH), splitting the forces on a particle between a dominant central force and perturbations. We used this method to perform fully collisional N -body simulations of inspiralling intermediate-mass black holes (IMBHs) in the centre of the Milky Way. We considered stellar cusps of different power-law indices and analysed the effects of IMBHs of different masses, all starting from circular orbits at an initial distance of 0.1 pc. Our simulations show how IMBHs deplete the central cusp of stars, leaving behind a flatter cusp with slope consistent with what has recently been observed. If an additional IMBH spirals into such a flat cusp, it can take 50 Myr or longer to merge with the central SMBH, thus allowing for direct observation in the near future. The final merger of the two black holes involves gravitational wave radiation which may be observable with planned gravitational wave detectors. Furthermore, our simulations reveal detailed properties of the hypervelocity stars (HVSs) created, and how generations of HVSs can be used to trace IMBHs in the Galactic Centre. We find that significant rotation of HVSs (which would be evidence for an IMBH) can only be expected among very fast stars (v > 1000 km s,1). Also, the probability of creating a hypervelocity binary star is found to be very small. [source]


Hiding cusps in cores: kinematics of disc galaxies in triaxial dark matter haloes

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
Eric Hayashi
ABSTRACT We study the kinematics of gaseous discs in triaxial dark matter haloes using the closed-loop orbit solutions in non-axisymmetric potentials. The orbits are in general non-circular and, for a given triaxiality, their ellipticity depends on the ratio of escape to circular velocities, V2esc/V2c. This ratio increases steeply towards the centre for cold dark matter (CDM) halo density profiles, implying that even minor deviations from spherical symmetry may induce large deviations from circular orbits in the velocity field of a gaseous disc, especially near the centre. This result suggests that caution should be exercised when interpreting constraints on the presence of density cusps in the dark halo derived from the innermost velocity profile. Simulated long-slit rotation curves vary greatly in shape, depending primarily on the viewing angle of the disc and on its orientation relative to the principal axes of the potential. ,Solid-body' rotation curves , typically interpreted as a signature of a constant density core in the dark matter distribution , are often obtained when the slit samples velocities near the major axis of the closed-loop orbits. Triaxial potentials imprint specific symmetries in 2D velocity fields, generally inducing ,twists' in the isovelocity contours and antisymmetric patterns in opposite quadrants. We suggest that triaxial haloes may be responsible for the variety of shapes of long-slit rotation curves of low surface brightness (LSB) galaxies, as well as for the complex central kinematics of LSBs, which are sometimes ascribed to the presence of ,radial motions' in the gas. We argue that LSB rotation curves might be reconciled with the structure of CDM haloes once the effects of halo triaxiality on the dynamics of gaseous discs are properly taken into account. [source]


An improved model for contraction of dark matter haloes in response to condensation of baryons

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
Marios Kampakoglou
ABSTRACT The cooling of gas in the centres of dark matter haloes is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. Following Gnedin et al., we improve this model by modifying the assumed invariant from M(r)r to , where r and are the current and orbit-averaged particle positions. We explore the effect of the bulge in the inner regions of the halo for different values of the bulge-to-disc mass ratio. We find that the bulge makes the velocity curve rise faster in the inner regions of the halo. We present an analytical fitting curve that describes the velocity curve of the halo after dissipation. The results should be useful for dark matter detection studies. [source]


The influence of binary stars on the kinematics of low-mass galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2002
S. De Rijcke
In this paper, the influence of binary stars on the measured kinematics of dwarf galaxies is investigated. Using realistic distributions of the orbital parameters (semi-major axis, eccentricity, etc.), analytical expressions are derived for the changes induced by the presence of binary stars in the measured velocity moments of low-mass galaxies (such as the projected velocity dispersion and the fourth-order Gauss,Hermite coefficient h4). It is shown that there is a noticeable change in the observed velocity dispersion if the intrinsic velocity dispersion of a galaxy is of the same order as the binary velocity dispersion. The kurtosis of the line-of-sight velocity distribution (LOSVD) is affected even at higher values of the intrinsic velocity dispersion. Moreover, the LOSVD of the binary stars (i.e. the probability of finding a star in a binary system with a particular projected velocity) is given in closed form, approximating the constituent stars of all binaries to revolve on circular orbits around each other. With this binary LOSVD, we calculate the observed LOSVD, the latter quantifying the movement of stars along the line of sight caused both by the orbits of the stars through the galaxy and by the motion of the stars in binary systems. As suggested by the changes induced in the moments, the observed LOSVD becomes more peaked around zero velocity and develops broader high-velocity wings. These results are important in interpreting kinematics derived from integrated-light spectra of low-mass galaxies and many of the intermediate results are useful for comparison with Monte Carlo simulations. [source]