Circadian Period (circadian + period)

Distribution by Scientific Domains


Selected Abstracts


Functionally important structural elements of the cyanobacterial clock-related protein Pex

GENES TO CELLS, Issue 1 2009
Shunsuke Kurosawa
Pex, a clock-related protein involved in the input pathway of the cyanobacterial circadian clock system, suppresses the expression of clock gene kaiA and lengthens the circadian period. Here, we determined the crystal structure of Anabaena Pex (AnaPex; Anabaena sp. strain PCC 7120) and Synechococcus Pex (SynPex; Synechococcus sp. strain PCC 7942). Pex is a homodimer that forms a winged-helix structure. Using the DNase I protection and electrophoresis mobility shift assays on a Synechococcus kaiA upstream region, we identified a minimal 25-bp sequence that contained an imperfectly inverted repeat sequence as the Pex-binding sequence. Based on crystal structure, we predicted the amino acid residues essential for Pex's DNA-binding activity and examined the effects of various Ala-substitutions in the ,3 helix and wing region of Pex on in vitro DNA-binding activity and in vivo rhythm functions. Mutant AnaPex proteins carrying a substitution in the wing region displayed no specific DNA-binding activity, whereas those carrying a substitution in the ,3 helix did display specific binding activity. But the latter were less thermostable than wild-type AnaPex and their in vitro functions were defective. We concluded that Pex binds a kaiA upstream DNA sequence via its wing region and that its ,3 helix is probably important to its stability. [source]


Developmental Alcohol Exposure Alters Light-Induced Phase Shifts of the Circadian Activity Rhythm in Rats

ALCOHOLISM, Issue 7 2004
Yuhua Z. Farnell
Background: Developmental alcohol (EtOH) exposure produces long-term changes in the photic regulation of rat circadian behavior. Because entrainment of circadian rhythms to 24-hr light/dark cycles is mediated by phase shifting or resetting the clock mechanism, we examined whether developmental EtOH exposure also alters the phase-shifting effects of light pulses on the rat activity rhythm. Methods: Artificially reared Sprague-Dawley rat pups were exposed to EtOH (4.5 g/kg/day) or an isocaloric milk formula (gastrostomy control; GC) on postnatal days 4 to 9. At 2 months of age, rats from the EtOH, GC, and suckle control groups were housed individually, and wheel-running behavior was continuously recorded first in a 12-hr light/12-hr dark photoperiod for 10 to 14 days and thereafter in constant darkness (DD). Once the activity rhythm was observed to stably free-run in DD for at least 14 days, animals were exposed to a 15-min light pulse at either 2 or 10 hr after the onset of activity [i.e., circadian time (CT) 14 or 22, respectively], because light exposure at these times induces maximal phase delays or advances of the rat activity rhythm. Results: EtOH-treated rats were distinguished by robust increases in their phase-shifting responses to light. In the suckle control and GC groups, light pulses shifted the activity rhythm as expected, inducing phase delays of approximately 2 hr at CT 14 and advances of similar amplitude at CT 22. In contrast, the same light stimulus produced phase delays at CT 14 and advances at CT 22 of longer than 3 hr in EtOH-treated rats. The mean phase delay at CT 14 and advance at CT 22 in EtOH rats were significantly greater (p < 0.05) than the light-induced shifts observed in control animals. Conclusions: The data indicate that developmental EtOH exposure alters the phase-shifting responses of the rat activity rhythm to light. This finding, coupled with changes in the circadian period and light/dark entrainment observed in EtOH-treated rats, suggests that developmental EtOH exposure may permanently alter the clock mechanism in the suprachiasmatic nucleus and its regulation of circadian behavior. [source]


The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering

THE PLANT JOURNAL, Issue 5 2006
Masaki Ishikawa
Summary Arabidopsis phytochrome A (phyA) regulates not only seed germination and seedling de-etiolation but also circadian rhythms and flowering time in adult plants. The SUPPRESSOR OF PHYA-105 (SPA1) acts as a negative regulator of phyA-mediated de-etiolation of young seedlings, but its roles in adult plants have not yet been described. Here, we show that SPA1 is involved in regulating circadian rhythms and flowering time in plants. Under constant light, the abundance of SPA1 protein exhibited circadian regulation, whereas under constant darkness, SPA1 protein levels remained unchanged. These results indicate that the SPA1 protein is controlled by the circadian clock and light signals. In addition, the spa1-3 mutation slightly shortened the circadian period of CCA1, TOC1/PRR1 and SPA1 transcript accumulation under constant light. Phenotypic analysis showed that the spa1-3 mutant flowers early under short-day (SD) but not long-day (LD) conditions. Consistent with this finding, transcripts encoding flowering locus T (FT), which promotes flowering, increased in spa1-3 under only SD conditions, although the CONSTANS (CO) transcript level was not affected under either SD nor LD conditions. Our results indicate that SPA1 not only negatively controls phyA-mediated signaling in seedlings, but also regulates circadian rhythms and flowering time in plants. [source]


PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleus

GENES TO CELLS, Issue 11 2007
Koyomi Miyazaki
Molecular circadian clock regulation engages a negative feedback loop comprising components of the negative limb, PERs and CRYs. In addition to the rhythmic transcriptional regulation of clock genes, controlled subcellular localization might contribute to the molecular mechanism of the mammalian circadian clock. To address this issue, we generated transgenic (TG) mice lines harboring either rat PER2 (rPER2) with a deleted nuclear localizing domain [NLD(,)] or intact PER2. In comparison with wild-type (WT) control, the period of the circadian locomotor rhythm in TG mice over-expressing NLD(,) PER2 was longer, while that in TG mice over-expressing intact PER2 was shorter. The nuclear entry of endogenous PER2, CRY1 and CRY2 was delayed in the suprachiasmatic nucleus (SCN) of NLD(,) PER2 TG mice under constant darkness, whereas that of mouse PER2 (mPER2) is accelerated in the SCN of intact PER2 TG mice. Under constant light, the locomotor activity of NLD(,) PER2 TG mice became arrhythmic, whereas WT animals remained rhythmic. These data indicate that PER2 controls circadian periods through nuclear localization in the SCN. In addition, sleep architecture was also affected in intact PER2 TG mice, suggesting PER2 can modulate a sleep molecular mechanism. [source]