Chironomids

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Chironomids

  • chironomid assemblage
  • chironomid larva
  • chironomid species

  • Selected Abstracts


    Dependent population dynamics between chironomids (nonbiting midges) and Vibrio cholerae

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2006
    Malka Halpern
    Abstract Vibrio cholerae, the causative agent of cholera, is a natural inhabitant of the aquatic ecosystem. Chironomid (nonbiting midges) egg masses were recently found to harbour V. cholerae non-O1 and non-O139, providing a natural reservoir for the cholera bacterium. Chironomid populations and the presence of V. cholerae in chironomid egg masses were monitored. All V. cholerae isolates were able to degrade chironomid egg masses. The following virulence associated genes were detected in the bacterial isolates: hapA (100%), toxR (100%), hlyA (72%) and ompU (28%). The chironomid populations and the V. cholerae in their egg masses followed the phenological succession and interaction of host,pathogen population dynamics. A peak in the chironomid population was followed by a peak in the V. cholerae population. If such a connection is further substantiated for the pathogenic serogroups of V. cholerae in endemic areas of the disease, it may lead to a better understanding of the role of chironomids as a host for the cholera bacterium. [source]


    Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki

    FEBS JOURNAL, Issue 20 2010
    Kanako Mitsumasu
    Larvae of an anhydrobiotic insect, Polypedilum vanderplanki, accumulate very large amounts of trehalose as a compatible solute on desiccation, but the molecular mechanisms underlying this accumulation are unclear. We therefore isolated the genes coding for trehalose metabolism enzymes, i.e. trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) for the synthesis step, and trehalase (TREH) for the degradation step. Although computational prediction indicated that the alternative splicing variants (PvTps,/,) obtained encoded probable functional motifs consisting of a typical consensus domain of TPS and a conserved sequence of TPP, PvTps, did not exert activity as TPP, but only as TPS. Instead, a distinct gene (PvTpp) obtained expressed TPP activity. Previous reports have suggested that insect TPS is, exceptionally, a bifunctional enzyme governing both TPS and TPP. In this article, we propose that TPS and TPP activities in insects can be attributed to discrete genes. The translated product of the TREH ortholog (PvTreh) certainly degraded trehalose to glucose. Trehalose was synthesized abundantly, consistent with increased activities of TPS and TPP and suppressed TREH activity. These results show that trehalose accumulation observed during anhydrobiosis induction in desiccating larvae can be attributed to the activation of the trehalose synthetic pathway and to the depression of trehalose hydrolysis. [source]


    Herbivory in an acid stream

    FRESHWATER BIOLOGY, Issue 4 2000
    Mark E. Ledger
    Summary 1Spatial and temporal variation in the distribution and feeding of non-predatory macroinvertebrates was investigated in a first-order, acid stream in the Ashdown Forest, southern England. 2Stonefly (Nemouridae) and chironomid (Orthocladiinae) larvae were abundant on the upper surfaces of mineral substrata of three sizes (small stones, large stones, bedrock). The density of larvae in each taxonomic group did not vary among substrata of different sizes, although strong seasonal variation existed. 3Nemourids and chironomids (H. marcidus) collected from the upper surfaces of substrata exhibited generalist feeding habits, consuming algae (diatoms, coccoid and filamentous green algae), detritus (biofilm matrix material and fine particulate organic matter (FPOM)) and inorganic debris. 4There was spatial variation in the gut contents of nemourids. The proportion of algae in the guts of larvae often increased with the size of the substratum from which they were collected. Strong temporal variation in the composition of the diet also existed. Nemourids ingested a large quantity of attached algae and biofilm matrix from the biofilm in spring and winter, but consumed loose FPOM and associated microflora in summer and autumn. 5We conclude that, in this acid stream, the trophic linkage between algae and grazers is maintained by ,detritivorous' stonefly and chironomid species. The relationship between the feeding habits of these larvae and other life-history attributes, such as mouthpart morphology and mobility, is discussed. [source]


    Interglacial Chironomidae (Diptera) from Thule, Northwest Greenland: matching modern analogues to fossil assemblages

    BOREAS, Issue 4 2003
    KLAUS PETER BRODERSEN
    An analysis of subfossil insect remains (Diptera, Chironomidae) from an interglacial site at Narsaarsuk near Thule Air Base, NW Greenland, was undertaken to complement our understanding of last interglacial environments in the Arctic by analogue matching to modern chironomid assemblages. The subfossil larval midge head capsules were well preserved and 82% of the chironomid remains were identified as eight different extant chironomid taxa. The assemblage was dominated by the lotic Diamesa (43.8%), a number of lentic taxa (Hydrobaenus, Psectrocladius, Cricotopus/Orthocladius) and a few semi-aquatic taxa (Smittia, Chaetocladius). A single black fly head capsule (Diptera, Simuliidae) was registered. The interglacial sample was compared to subfossil chironomid assemblages from 42 lakes in West Greenland, two glacier lakes (with and without river influence) and a quantitative zoobenthos study from Narsaq Elv. Similarity analysis, analogue matching and multidimensional scaling suggest a lotic, cold, glacier-fed interglacial palaeo-biotope. Quantitative temperature reconstruction was not possible owing to a high dissimilarity to modern lentic chironomid assemblages from West Greenland. However, the simple numerical methods convincingly managed to reflect an interglacial river and stream environment, which can be difficult to document from other palaeoecological data. [source]


    Insect community organisation in estuaries: the role of the physical environment

    ECOGRAPHY, Issue 3 2002
    D. Dudley Williams
    Insects are reportedly uncommon in marine habitats and, from a spatial/temporal intercomparison perspective, estuaries are among the least studied. We examined the natural variability seen among insect community organisation in estuaries on both sides of the North Atlantic, and evaluated the role of their physical environments. Community composition was found to be strongly influenced by three physical factors: estuary size, the degree of inundation by incoming tides, and substrate size/stability. Insects formed a significant proportion (17,54%, by numbers) of the benthic community of coarse-grained-substratum estuaries, and species richness increased with estuary size. Nymphs/larvae of mayflies, stoneflies, caddisflies, elmid beetles and chironomids dominated channel sites inundated by up to 25% of all incoming tides, but a gradual loss in species richness occurred downstream. However, even the most seaward sites supported high insect densities (up to 25,016 and 5433 m,2, supporting 26 and 4 species, at sites inundated by 75 and 100% of all incoming tides, respectively). Sites covered by tides for between 3 and 5 h twice daily were dominated by orthocladine chironomids, especially of the genus Orthocladius. Chironomid larvae contribute significantly to the diets of some coastal fish species, particularly juvenile flounder and sticklebacks. We present a schematic model summarising the relationships between estuary size, degree of inundation by salt water and insect community structure. [source]


    Habitat and food choice of Arctic charr in Linnévatn on Spitsbergen, Svalbard: the first year-round investigation in a High Arctic lake

    ECOLOGY OF FRESHWATER FISH, Issue 1 2007
    M.-A. Svenning
    Abstract,,, Habitat and diet of Arctic charr Salvelinus alpinus (L.) were studied by monthly sampling from late autumn to early summer in Linnévatn, Svalbard (78°3,N, 13°50,E). This is the first year-round study of a population of charr in the High Arctic, with samples being taken every 5,7 weeks. The ice cover lasted for more than 9 months, from mid-October to late July, with the greatest thickness in mid-May. Although most charr occupied the littoral zone during winter, the highest densities in April and October were found in the deeper areas (20 m) of the lake. The fish fed at all times of the year, but the number of stomachs with food and the stomach-filling indices were lowest during the darkest part of the season. The diet of smaller charr (<15 cm) varied strongly with season, showing a dominance of zooplankton in late autumn and chironomids in winter (larvae) and summer (pupae). The food choice was in accordance with the density of food items available. Larger fish (,15 cm) were mostly cannibalistic during the entire year. [source]


    Ontogenetic diet profiles and size-dependent diet partitioning of ruffe Gymnocephalus cernuus, perch Perca fluviatilis and pumpkinseed Lepomis gibbosus in Lake Balaton

    ECOLOGY OF FRESHWATER FISH, Issue 3 2006
    E. Rezsu
    Abstract ,, Life-long diet ontogeny and size-dependent intra- and interspecific diet partitioning of the native ruffe and perch and the introduced pumpkinseed, were studied in Lake Balaton. Estimated intraspecific diet overlap was high in ruffe, whereas in perch and pumpkinseed only the neighbouring size groups exhibited a high diet similarity. Interspecific diet overlap among size groups of the three species was moderate and ,60% diet overlap occurred only in 13 size group pair variations out of the 429 analysed. The earliest developmental stages of the three species were planktivorous, whereas larger ruffe and some size groups of perch and pumpkinseed fed dominantly on chironomids. Adult perch and pumpkinseed consumed different littoral macroinvertebrates, while the largest perch were piscivorous. Although productivities of the two studied areas differ significantly, this had only little effect on the diet ontogeny and diet partitioning of the three species. Present results suggest that in Lake Balaton these three species effectively partition food resources throughout their life span. [source]


    Competition for food between Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus [L.]) over different substrate types

    ECOLOGY OF FRESHWATER FISH, Issue 4 2004
    A. Dieterich
    Abstract,,, Food consumption by Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus [L.]) was studied in single and mixed-species treatments in the laboratory, where alternative food resources, chironomids and zooplankton, were offered simultaneously. The effects of structural complexity, which was represented by substrate grain size, and of feeding level on food consumption were analysed. Across all experiments, the outcome of competition between perch and ruffe depended on food abundance and on the structural complexity of the environment. Perch and ruffe both changed their food consumption in the presence of a heterospecific competitor. With high food supply, perch consumed more benthic food than ruffe. With low food supply, the consumption of perch decreased strongly, while that of ruffe remained high on fine sediment. Under all conditions tested, the mechanism of competition appeared to be of interference rather than of exploitative nature. It is suggested that with decreasing lake productivity caused by re-oligotrophication, habitat shifts of both species will occur, which will alleviate interspecific competition. Ruffe will forage over fine sediment and perch over coarse sediment, whereby both species will achieve the highest foraging efficiency under conditions of low food supply. Resumen 1. Hemos estudiado el consumo alimenticio de Perca fluviatilis L. y Gymnocephalus cernuus (L.) en condiciones de laboratorio. Bajo tratamientos de especies individuales y mezcladas, les ofrecimos, simultáneamente, varios recursos alimenticios alternativos (quironómidos y zooplancton). 2. Analizamos los efectos de la complejidad estructural - representada por el tamaño del sustrato (arena, grava, y guijo) - y del nivel alimenticio, sobre el consumo alimenticio. Pusimos especial atención a la potencial influencia de competidores hetero-específicos sobre los patrones alimenticios de ambas especies, tanto en términos cualitativos como cuantitativos. Además, dado que en un futuro cercano una menor productividad general en lagos debida a re-oligotrofia, probablemente aumente la competición por el alimento en muchos lagos donde ambas especies co-existen, los experimentos se llevaron a cabo bajo niveles de abastecimiento alimenticio alto y bajo. 3. En los experimentos, la aparición de competencia entre P. fluviatilis y G. cernuus dependió de la abundancia del alimento y de la complejidad estructural del ambiente. El consumo de quironómidos por P. fluviatilis dependió del tipo de sustrato a niveles altos de abastecimiento alimenticio pero no a niveles bajos, mientras que en G. cernuus observamos lo contrario. 4. Ambas especies cambiaron el consumo alimenticio en presencia de un competidor hetero-específico. A altos niveles de abastecimiento alimenticio, P. fluviatilis consumió más bentos que G. cernuus. A niveles bajos, el consumo de P. fluviatilis decreció substancialmente mientras que el de G. cernuus permaneció alto en sedimento fino. Bajo todas las condiciones experimentales analizadas, los mecanismos de competición parecieron ser de interferencia más que de naturaleza explotativa. 5. Finalmente, presentamos un escenario sobre como P. fluviatilis y G. cernuus pueden competir por alimento bentónico en lagos con variado sustrato de fondo. Sugerimos que a altos niveles de abastecimiento alimenticio, G. cernuus forrajee más sobre arena y grava mientras que P. fluviatilis puede utilizar todos los sustratos disponibles. Al decrecer el abastecimiento alimenticio por re-oligotrofia, pueden producirse cambios en el hábitat de ambas especies que minimizarán la competencia inter-específica. G. cernuus forrajeará básicamente sobre sedimento fino, allá donde sea claramente superior a P. fluviatilis. Esta última especie forrajeará predominantemente sobre sedimento más grueso donde se enfrentará a competencia intra- e inter-específica. A través de estos cambios de hábitat, ambas especies podrían alcanzar la mayor eficiencia de forrajeo bajo condiciones de bajo abastecimiento alimenticio. [source]


    Resource partitioning between lake-dwelling Atlantic salmon (Salmo salar L.) parr, brown trout (Salmo trutta L.) and Arctic charr (Salvelinus alpinus (L.))

    ECOLOGY OF FRESHWATER FISH, Issue 4 2000
    L. Jørgensen
    Abstract , Resource partitioning between Atlantic salmon parr, brown trout and Arctic charr was studied throughout the ice-free season in a north Norwegian lake. Juvenile salmon and trout (,160 mm) utilized the littoral zone and juvenile charr the profundal, while adult trout and charr (>160 mm) were found in both. Juvenile salmon and trout had a similar diet, although trichopteran larvae were more important for the trout and chironomid pupae and three-spined sticklebacks for the salmon parr. Small salmon and trout parr (,120 mm) had a higher diet overlap than larger parr (121,160 mm). The feeding habits of adult trout were similar to that of juvenile trout, but the former took larger prey items. At the population level, both salmon and trout were generalistic feeders with a broad diet, but at the individual level, both species had specialized on a single or a few prey categories. Juvenile charr were segregated from salmon and trout in both habitat and food utilization; they had a narrow diet consisting of chironomids and zooplankton, possibly reflecting their confinement to the profundal habitat which have a low diversity of potential prey. Larger charr also took zoobenthos and sticklebacks in the littoral zone., [source]


    The association between non-biting midges and Vibrio cholerae

    ENVIRONMENTAL MICROBIOLOGY, Issue 12 2008
    Meir Broza
    Summary Vibrio cholerae is a natural inhabitant of aquatic ecosystems, yet its interactions within this habitat are poorly understood. Here we describe the current knowledge on the interaction of V. cholerae with one group of co-inhabitants, the chironomids. Chironomids, non-biting midges (Chironomidae, Diptera), are an abundant macroinvertebrate group encountered in freshwater aquatic habitats. As holometabolous insects, chironomids start life when their larvae hatch from eggs laid at the water/air interface; through various feeding strategies, the larvae grow and pupate to become short-lived, non-feeding, adult flying insects. The discovery of the connection between V. cholerae and chironomids was accidental. While working with Chironomus transavaalensis, we observed the disintegration of its egg masses and searched for a possible microbial agent. We identified V. cholerae as the primary cause of this phenomenon. Haemagglutinin/protease, a secreted extracellular enzyme, degraded the gelatinous matrix surrounding the eggs, enabling bacterial growth. Observation of chironomids in relation to V. cholerae continuously for 7 years in various types of water bodies in Israel, India, and Africa revealed that environmental V. cholerae adhere to egg-mass surfaces of various Chironomini (,bloodworms'). The flying adults' potential to serve as mechanical vectors of V. cholerae from one water body to another was established. This, in turn, suggested that these insects play a role in the ecology of V. cholerae and possibly take part in the dissemination of the pathogenic serogroups during, and especially between, epidemics. [source]


    Ecdysteroid synthesis and imaginal disc development in the midge Chironomus riparius as biomarkers for endocrine effects of tributyltin

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2002
    Torsten Hahn
    Abstract Acute effects of the endocrine disruptor bis (tri- n -butyltin) oxide (TBTO) on molting-hormone biosynthesis and imaginaldisc development were investigated in larvae of the midge Chironomus riparius (Meigen). Ecdysteroid synthesis was measured by 24-h incubation of molting-hormone-synthesizing tissues (prothoracic glands) in vitro with or without the addition of TBTO. The amount of ecdysteroids produced was analyzed by radioimmunoassay. Developmental effects in vivo were investigated by determining the developmental phase of the genital imaginal discs before and after a 48-h exposure to TBTO in water. Sex-specific effects were found with both endpoints. Ecdysteroid synthesis was significantly reduced (analysis of variance [ANOVA], p , 0.005) in female larvae at all concentrations (TBTO-Sn at 50, 500, and 5,000 ng/L), whereas a significant elevation of the biosynthesis rate occurred in male larvae in the 500-ng/L treatment (ANOVA, p , 0.05). In vivo experiments with development of the genital imaginal disc within a 48-h exposure period revealed a significantly slower development in female larvae and a significantly faster development in male larvae (contingency tables, p , 0.001) at all concentrations tested (TBTO-Sn at 10, 50, 200, and 1,000 ng/L). These results partly coincided with the in vitro effects on molting-hormone synthesis. The 48-h median lethal concentration (LC50) was 25 ,g/L (20,30 ,g/L 95% confidence intervals). The combination of in vitro and in vivo methods has proven to be a useful approach for the detection of endocrine effects of TBTO in C. riparius at levels 2,000-fold below the LC50 value. High sensitivity and short test duration suggest that chironomids may have potential as freshwater sentinel organisms for endocrine-disrupting chemicals. [source]


    Toxicity of total dissolved solids associated with two mine effluents to chironomid larvae and early life stages of rainbow trout

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2000
    Peter M. Chapman
    Abstract Asessment of total dissolved solids (TDS) represents anintegrated measure of the concentrations of common ions (e.g., sodium, potassium, calcium, magnesium, chloride, sulfate, and bicarbonate) in freshwaters. Toxicity related to these ions is due to the specific combination and concentration of ions and is not predictable from TDS concentrations. Short-term chronic toxicity tests were conducted with larval chironomids and trout (eggs and swim-up fry) to assess their TDS tolerance relative to effluents from two Alaskan mines. Both effluents are characterized by high TDS content but differ with respect to concentrations of specific ions and alkalinity. The toxicity tests were conducted with synthetic effluents formulated to match the ionic composition of each mine discharge. No toxicity was observed at >2,000 mg of TDS/L with embryos or developing fry, but chironomids exhibited effects above 1,100 mg of TDS/L. These tests, together with information on the health of field populations (fish and benthic invertebrates), are appropriate and relevant for determining site-specific whole effluent TDS concentrations. [source]


    Dependent population dynamics between chironomids (nonbiting midges) and Vibrio cholerae

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2006
    Malka Halpern
    Abstract Vibrio cholerae, the causative agent of cholera, is a natural inhabitant of the aquatic ecosystem. Chironomid (nonbiting midges) egg masses were recently found to harbour V. cholerae non-O1 and non-O139, providing a natural reservoir for the cholera bacterium. Chironomid populations and the presence of V. cholerae in chironomid egg masses were monitored. All V. cholerae isolates were able to degrade chironomid egg masses. The following virulence associated genes were detected in the bacterial isolates: hapA (100%), toxR (100%), hlyA (72%) and ompU (28%). The chironomid populations and the V. cholerae in their egg masses followed the phenological succession and interaction of host,pathogen population dynamics. A peak in the chironomid population was followed by a peak in the V. cholerae population. If such a connection is further substantiated for the pathogenic serogroups of V. cholerae in endemic areas of the disease, it may lead to a better understanding of the role of chironomids as a host for the cholera bacterium. [source]


    Feeding rates, assimilation efficiencies and growth of two amphipod species on biodeposited material from zebra mussels

    FRESHWATER BIOLOGY, Issue 12 2008
    RENÉ GERGS
    Summary 1. Accumulation of organic material by the zebra mussel Dreissena polymorpha is assumed to be the source of a biodeposition-based food web. However, only little is known about the importance of the biodeposited material as a food source and its contribution to increased abundances of macroinvertebrates in the presence of D. polymorpha. 2. Feeding, assimilation and growth of the amphipods Gammarus roeselii and Dikerogammarus villosus on food sources directly and indirectly associated with D. polymorpha (biodeposited material and chironomids) and on conditioned alder leaves were measured. The stoichiometry of carbon, nitrogen and phosphorus of the diets was measured as an important determining factor of food quality. 3. Chironomids had the highest nitrogen and phosphorus contents, alder leaves were depleted in nitrogen and phosphorus, and the stoichiometry of biodeposited material was intermediate. 4. Both amphipod species had highest feeding rates and assimilation efficiencies on chironomids. Gammarus roeselii fed more on biodeposited material than on alder leaves, but assimilation efficiencies were similar; D. villosus also had similar feeding rates and assimilation efficiencies on the two diets. 5. Both amphipod species had highest growth rates on chironomids and lowest growth rates on alder leaves. Both grew at intermediate rates on biodeposited material of D. polymorpha. The growth rates of the amphipod species were related to food stoichiometry. Overall, the invasive D. villosus grew faster than the indigenous G. roeselii. 6. Food resources directly and indirectly associated with D. polymorpha are potential diets for amphipods, providing further evidence for a D. polymorpha biodeposition-based food web. [source]


    The relationship between Chironomus plumosus burrows and the spatial distribution of pore-water phosphate, iron and ammonium in lake sediments

    FRESHWATER BIOLOGY, Issue 2 2007
    JÖRG LEWANDOWSKI
    Summary 1. To study the influence of chironomids on the distribution of pore-water concentrations of phosphate, iron and ammonium, we conducted a laboratory experiment using mesocosms equipped with two-dimensional pore-water samplers, filled with lake sediment and populated with different densities of Chironomus plumosus. 2. Specially designed mesocosms were used in the study. A 6-mm deep space between the front plate and the pore-water sampler at the back plate was just thick enough to allow the chironomids to live undisturbed, yet thin enough to force all the burrows into a two-dimensional plane. 3. The courses of the burrows were observed during the experiment as oxidised zones surrounding them, as well as being identified with an X-ray image taken at the end of the experiment. 4. We investigated the relationship between C. plumosus burrows and spatial patterns of pore-water composition. Concentrations of the three ions were significantly less around ventilated burrows (54% to 24%), as bioirrigation caused a convective exchange of pore-water enriched with dissolved species compared with the overlying water, and also because oxygen imported into the sediment resulting in nitrification of ammonium, oxidation of iron(II) and a co-precipitation of phosphate with Fe(III) oxyhydroxides. 5. In mesocosms with chironomids, new (redox) interfaces occurred with diffusive pore-water gradients perpendicular to the course of burrows and the site of major phosphate, ammonium and iron(II) release shifted from the sediment surface to the burrow walls. [source]


    Effects of sand sedimentation on the macroinvertebrate fauna of lowland streams: are the effects consistent?

    FRESHWATER BIOLOGY, Issue 1 2006
    BARBARA J. DOWNES
    Summary 1. In lowland streams sand sedimentation can produce sand slugs: very slow moving, discrete volumes of sand that are created episodically. Hypothetically, such sedimentation causes losses of habitat and fauna but little is known about the effects of sand slugs. In south-eastern Australia sand slugs are widespread, especially in streams with granitic catchments. 2. This study in north-central Victoria was centred on three streams that rise in the Strathbogie Ranges and flow out onto lowland plains, where they contain sand slugs. Below the sand slugs, the streams are slow-flowing ,chains of ponds' with a clay streambed. To correct for potential upstream-downstream confounding of comparisons, two unsanded, nearby streams were included as potential controls. Habitat measurements and faunal samples were taken in Spring 1998, from three sites in the sand slug and three sites in the clay-bed, downstream sections of each impacted stream, as well as from three sites in commensurate upstream and downstream sections of the control streams. 3. The sand-slugged sections had significantly higher velocities, shallower depths and less coarse woody debris than the unsanded downstream sections. Macroinvertebrate taxon richness and abundance showed some significant differences between the sand and clay sections compared with commensurate up- and downstream locations in the control streams. Effects were not uniform, however. In Castle Creek there were no significant differences between the sand and clay sections, in Pranjip-Ninemile Creek taxon richness and abundances were higher in sand than in the clay sections, whereas in Creightons Creek the ,expected' results of lower taxon richness and abundance in the sand were found. 4. Of the 40 most common taxa, only eight provided a clear signal related to sand and, of these, one (Slavina sp.) occurred only in the sand slugs, whereas the other seven had significantly higher numbers in the clay sections. Of these taxa, three were ostracods, three were chironomids and one was a tubificid oligochaete, all taxa that live in detritus-rich environments. Overall faunal composition did not show a clear distinction though, between sandy and clay sites. The sand slug community of Creightons Creek was very different from the other communities in all of the streams. There were clear differences in community composition between the sand-affected and the control streams, even for downstream, clay sections, suggesting they cannot act as controls for the impacted sections of the sand-slugged streams. 5. Differences between streams within categories (particularly between sand-slugged streams) and between sites in the same section of stream accounted for most of the variability in species richness and the abundances of each of the 40 most common taxa. That finding was repeated when data were examined at the family level, for both numbers of families per sample and collated lists of families occurring across sites. These results strongly suggest that the effects of sedimentation by sand slugs do not overwhelm background variation in macroinvertebrate density and diversity. Overall the results suggest that many taxa may respond individually, and that there is much variation between sand-affected streams even over relatively small (approximately <10 km) spatial scales. [source]


    Non-lethal predator effects on the performance of a native and an exotic crayfish species

    FRESHWATER BIOLOGY, Issue 12 2005
    PER NYSTRÖM
    Summary 1. I tested the hypothesis that the potential for non-lethal effects of predators are more important for overall performance of the fast-growing exotic signal crayfish (Pacifastacus leniusculus Dana) than for the slower growing native noble crayfish (Astacus astacus L.). I further tested if omnivorous crayfish switched to feed on less risky food sources in the presence of predators, a behaviour that could reduce the feeding costs associated with predator avoidance. 2. In a 2 month long outdoor pool experiment, I measured behaviour, survival, cheliped loss, growth, and food consumption in juvenile noble or signal crayfish in pools with either a caged predatory dragonfly larvae (Aeshna sp.), a planktivorous fish that do not feed on crayfish (sunbleak, Leucaspius delineatus Heckel), or predator-free controls. Crayfish had access to multiple food sources: live zooplankton, detritus and periphyton. Frozen chironomid larvae were also supplied ad libitum outside crayfish refuges, simulating food in a risky habitat. 3. Crayfish were mainly active during hours of darkness, with signal crayfish spending significantly more time outside refuges than noble crayfish. The proportion of crayfish outside refuges varied between crayfish species, time and predator treatment, with signal crayfish spending more time in refuges at night in the presence of fish. 4. Survival in noble crayfish was higher than in signal crayfish, and signal crayfish had a higher frequency of lost chelipeds, indicating a high level of intraspecific interactions. Crayfish survival was not affected by the presence of predators. 5. Gut-contents analysis and stable isotope values of carbon (,13C) and nitrogen (,15N) indicated that the two crayfish species had similar food preferences, and that crayfish received most of their energy from feeding on invertebrates (e.g. chironomid larvae), although detritus was the most frequent food item in their guts. Signal crayfish guts were more full than those of noble crayfish, but signal crayfish in pools with fish contained significantly less food and fewer had consumed chironomids compared with predator-free controls. Length increase of signal crayfish (35%) was significantly higher than of noble crayfish (20%), but signal crayfish in pools with fish grew less than in control pools. 6. This short-term study indicates that fish species that do not pose a lethal threat to an organism may indirectly cause reductions in growth by affecting behaviour and feeding. This may occur even though prey are omnivorous and have access to and consume multiple food sources. These non-lethal effects of predators are expected to be particularly important in exotic crayfish species that show a general response to fish, have high individual growth rates, and when their feeding on the most profitable food source is reduced. [source]


    Decline in the quality of suspended fine particulate matter as a food resource for chironomids downstream of an urban area

    FRESHWATER BIOLOGY, Issue 5 2004
    Emma J. Rosi-MarshallArticle first published online: 16 APR 200
    Summary 1. Urbanization and its associated contamination could degrade the quality of suspended fine particulate organic matter (SFPM) (20 ,m to 1 mm) as a food resource for aquatic insects. SFPM was collected at four sites along the main stem of the Chattahoochee River, which drains metropolitan Atlanta at base and high flow during four seasons. 2. Composition of SFPM was estimated using measures conventionally associated with food quality: bacteria, N/C ratio, caloric content, % inorganic, and % lipids, and metal (Cd, Cu, Pb, and Zn) concentration. In SFPM collected during base flow, % inorganic matter, calories, Cu, Pb, and Zn concentrations increased with cumulative permitted wastewater treatment discharge (an indicator of extent of urbanization upstream). In SFPM samples collected during high flow, % diatoms, Cu, Pb and Zn concentrations increased with urbanization. 3. A growth assay was used as an integrated and direct measure of SFPM quality as a food resource. The instantaneous growth rate (IGR) of chironomids fed SFPM collected during base flow declined downstream of the city. IGRs of chironomids fed SFPM collected at all sites during high flow were as low as the lowest IGR measured during base flow. 4. Insects fed SFPM collected from the Chattahoochee River had IGRs only 20% of those of chironomids fed SFPM collected from the Little Tennessee River, a relatively undisturbed river in North Carolina. The mortality rate of chironomids fed SFPM was not different among sites or rivers. While the decline in SFPM quality in the Chattahoochee River is probably attributable to some aspect of urbanization, the decline was not related to conventional measures of food quality or metal contamination. [source]


    Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river

    FRESHWATER BIOLOGY, Issue 6 2002
    CHRISTIAN FESL
    1.,Larval chironomids were examined at four sites on a cross-section of the River Danube in Austria between September 1995 and August 1996. The sites differed in hydraulics, sediment composition and habitat stability. 2.,Species,accumulation curves, showing the increase in number of species with increasing sampling effort, from three main channel sites were best described by a logarithmic model, suggesting that most of the species occurring at these sites were found. Data from a site connected to a backwater fitted best to a power model, indicating a random assemblage with additional species immigrating from the backwater area. 3.,Properties of the community were estimated using Jackknife techniques: species richness (range of mean values at the four sites: 32,91), H, diversity (1.5,2.3), evenness (0.23,0.28), spatial resource width (0.01,0.06), spatial resource overlap (0.13,0.20), spatial species aggregation (0.60,0.77), temporal community persistence (Kendal's correlation coefficient: 0.47,0.60) and beta-diversity (6.2,9.7). 4.,Redundancy analysis (RDA) was used to relate the community properties and species abundance to environmental factors. Habitat stability was the major factor associated with community structure. Higher sediment turnover led to higher spatial aggregation and, consequently, a decrease in spatial resource width and overlap, and to a decline in larval density and species richness. 5.,Species-abundance patterns agreed well with the log-normal model. Moderate community persistence and stability of the streambed sediments suggest that the log-normal model may be a good descriptor for communities of intermediately disturbed habitats, like large rivers, rather than stable habitats. [source]


    Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes

    FRESHWATER BIOLOGY, Issue 3 2000
    Yannick R. Delettre
    SUMMARY 1This study investigates the possible influence of terrestrial landscape structure on the spatial distribution of adult Chironomidae emerging from water bodies in three agricultural areas, each with hedgerow networks, in Brittany (France). 2Using spatially explicit data from 128 yellow pan traps set in pairs at the bottom of hedges throughout the three study areas, we show that landscape structure and heterogeneity must be considered at two different spatial scales. 3At a global scale, distance to water bodies was the main factor explaining the spatial distribution of adult chironomids: both species richness and abundance changed beyond a critical distance to the stream, resulting in different species assemblages of flying insects. 4At a local scale, the abundance of species and individuals at rest in hedges changed with the quality of the hedge (mainly determined by canopy width and cover of the different vegetation layers). 5The density of the hedgerow network, and landscape openness, both influenced the dispersal of chironomid species from water bodies. 6This study, which provides the first estimate of the dispersal capabilities of chironomids in particular landscapes, suggests that the terrestrial environment is an essential component of population dynamics and community structure in aquatic Chironomidae. [source]


    Putting the meio- into stream ecology: current findings and future directions for lotic meiofaunal research

    FRESHWATER BIOLOGY, Issue 1 2000
    A. L. Robertson
    Summary 1There is a paucity of research on epigean freshwater lotic meiofauna. This may result from a previous emphasis on interstitial (groundwater and hyporheic) meiofauna and/or a reliance on sampling methodologies in lotic systems which are inappropriate for meiofauna. 2Meiofauna contribute much to the diversity of lotic ecosystems. Species lists for seven streams reveal that meiofauna contribute 58,82% of total species numbers, with rotifers and chironomids dominating most systems. The absence of taxonomic keys for most meiofaunal taxa in large areas of the world precludes a wider analysis of their contribution to lotic diversity and an assessment of biogeographical patterns and processes. 3The trophic and functional role of meiofauna in lotic ecosystems is unclear. There are few estimates of meiofaunal production in freshwaters and biomass spectra have produced conflicting results for lotic meiofauna. Present static estimates suggest that the contribution of meiofauna to lotic productivity and biomass is small to moderate, but further studies incorporating a temporal component may provide a more realistic picture of the total contribution of meiofauna to biomass size spectra. 4Meiofauna differ from macroinvertebrates in several respects apart from size and conceptual models for lotic ecosystems should include all metazoans if they are to be truly representative. 5Information on the basic ecology of certain lotic meiofauna (i.e. nematodes, tardigrades, microturbellarians) is urgently required. For those groups whose distributional patterns are better understood (e.g. microcrustaceans), the mechanisms underpinning these patterns should be explored. It is essential that the importance of meiofauna is recognised by lotic ecologists; the only realistic way forward is for greater collaboration among meiofaunal ecologists and taxonomists and other lotic scientists. [source]


    Herbivory in an acid stream

    FRESHWATER BIOLOGY, Issue 4 2000
    Mark E. Ledger
    Summary 1Spatial and temporal variation in the distribution and feeding of non-predatory macroinvertebrates was investigated in a first-order, acid stream in the Ashdown Forest, southern England. 2Stonefly (Nemouridae) and chironomid (Orthocladiinae) larvae were abundant on the upper surfaces of mineral substrata of three sizes (small stones, large stones, bedrock). The density of larvae in each taxonomic group did not vary among substrata of different sizes, although strong seasonal variation existed. 3Nemourids and chironomids (H. marcidus) collected from the upper surfaces of substrata exhibited generalist feeding habits, consuming algae (diatoms, coccoid and filamentous green algae), detritus (biofilm matrix material and fine particulate organic matter (FPOM)) and inorganic debris. 4There was spatial variation in the gut contents of nemourids. The proportion of algae in the guts of larvae often increased with the size of the substratum from which they were collected. Strong temporal variation in the composition of the diet also existed. Nemourids ingested a large quantity of attached algae and biofilm matrix from the biofilm in spring and winter, but consumed loose FPOM and associated microflora in summer and autumn. 5We conclude that, in this acid stream, the trophic linkage between algae and grazers is maintained by ,detritivorous' stonefly and chironomid species. The relationship between the feeding habits of these larvae and other life-history attributes, such as mouthpart morphology and mobility, is discussed. [source]


    Effects of Submerged Aquatic Vegetation on Macrozoobenthos in a Coastal Lagoon of the Southwestern Atlantic

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2007
    Rafael Arocena
    Abstract The freshwater-dominated part of Rocha coastal lagoon recently experienced sudden colonization by submerged aquatic vegetation (SAV). Macrophytes may be beneficial or detrimental for the zoobenthos, and both assemblages may in turn affect the food availability for birds and fishes. With the aim of evaluating the effect of SAV on water conditions and on the composition, abundance and diversity of macrozoobenthos, vegetated areas (V, up to 500 g DW m,2) were compared with vegetation-free areas (N). The benthic abundance was higher in V (up to 5000 ind m,2) than in N (up to 2200 ind m,2). Species richness and abundance of amphipods, gastropods and chironomids were also higher at V compared with N. Conversely, the abundance of Tanais stanfordi (Crustacea), Erodona mactroides (Bivalvia) and Laeonereis culveri (Polychaeta), and the Shannon diversity were higher at N. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Larvae of Chironomids (Insecta, Diptera) Encountered in the Mantle Cavity of Zebra Mussels, Dreissena polymorpha (Bivalvia, Dreissenidae)

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2005
    Sergey E. Mastitsky
    Abstract The paper includes data on species composition of chironomid larvae which were encountered in the mantle cavity of zebra mussels (Dreissena polymorpha) within 7 waterbodies in the Republic of Belarus. All were found to be free-living species commonly present in periphyton and/or benthos. A long-term study of the seasonal dynamics of these larvae in Dreissena did not reveal any typical pattern. Our data suppose that chironomids do not have an obligate association with zebra mussels and possibly enter their mantle cavity inadvertently. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Feedbacks between community assembly and habitat selection shape variation in local colonization

    JOURNAL OF ANIMAL ECOLOGY, Issue 4 2010
    Johanna M. Kraus
    Summary 1.,Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2.,These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3.,Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4.,Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5.,This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities. [source]


    The role of trout in stream food webs: integrating evidence from field surveys and experiments

    JOURNAL OF ANIMAL ECOLOGY, Issue 2 2006
    KRISTIAN MEISSNER
    Summary 1We evaluated the effects of brown trout on boreal stream food webs using field surveys and enclosure/exclosure experiments. Experimental results were related to prey preference of uncaged trout in the same stream, as well as to a survey of macroinvertebrate densities in streams with vs. without trout. Finally, we assessed the generality of our findings by examining salmonid predation on three groups of macroinvertebrate prey (chironomid midges, epibenthic grazers, invertebrate predators) in a meta-analysis. 2In a preliminary experiment, invertebrate predators showed a strong negative response to trout, whereas chironomids benefited from trout presence. In the main experiment, trout impact increased with prey size. Trout had the strongest effect on invertebrate predators and cased caddis larvae, whereas Baetis mayfly and chironomid larvae were unaffected. Trout impact on the largest prey seemed mainly consumptive, because prey emigration rates were low and independent of fish presence. Despite strong effects on macroinvertebrates, trout did not induce a trophic cascade on periphyton. Uncaged trout showed a strong preference for the largest prey items (predatory invertebrates and aerial prey), whereas Baetis mayflies and chironomids were avoided by trout. 3Densities of invertebrate predators were significantly higher in troutless streams. Baetis mayflies also were less abundant in trout streams, whereas densities of chironomids were positively, although non-significantly, related to trout presence. Meta-analysis showed a strong negative impact of trout on invertebrate predators, a negative but variable impact on mobile grazers (mainly mayfly larvae) and a slightly positive impact on chironomid larvae. 4Being size-selective predators, salmonid fishes have a strong impact on the largest prey types available, and this effect spans several domains of scale. Discrepancies between our experimental findings and those from the field survey and meta-analysis show, however, that for most lotic prey, small-scale experiments do not reflect fish impact reliably at stream-wide scales. 5Our findings suggest that small-scale experiments will be useful only if the experimental results are evaluated carefully against natural history information about the experimental system and interacting species across a wide array of spatial scales. [source]


    Effects of gizzard shad on benthic communities in reservoirs

    JOURNAL OF FISH BIOLOGY, Issue 6 2003
    K. B. Gido
    Effects of gizzard shad Dorosoma cepedianum on benthic communities in a large southern reservoir (Lake Texoma, U.S.A.) were examined during two field enclosure and exclosure experiments in which enclosures were stocked at high and low densities in 1998 and 1999, respectively. In both years, chironomid abundance significantly increased in treatments that excluded large fishes from foraging on sediments. Mean abundance of chironomids and ostracods were significantly higher (P < 0·05) in exclosures than enclosures stocked with gizzard shad at 1140,1210 kg ha,1. In 1999, benthic invertebrate abundances did not differ (P > 0·08) between exclosure and enclosures stocked at 175,213 kg ha,1. Per cent organic matter, algal abundance and abundance of other macroinvertebrates in sediments did not differ significantly among treatments in either year. Although chironomid abundance was reduced in gizzard shad enclosures in 1998, food habits from this and other studies showed that adult gizzard shad in Lake Texoma only consumed detritus and algae. It is likely that high sedimentation rates in Lake Texoma limit the ability of gizzard shad to regulate algae and detritus in benthic sediments. Thus, it is concluded that disturbance of benthic sediments by gizzard shad caused the observed reduction in chironomid abundance, rather than through consumption or competition for resources. [source]


    The predatory impact of the freshwater invader Dikerogammarus villosus on native Gammarus pulex (Crustacea: Amphipoda); influences of differential microdistribution and food resources

    JOURNAL OF ZOOLOGY, Issue 1 2005
    Calum MacNeil
    Abstract Predation between invading and native species can produce patterns of exclusion and coexistence. Dikerogammarus villosus, a Ponto-Caspian amphipod species, has invaded many central European freshwaters in the past decade, replacing native Gammarus amphipod species. For instance, the arrival of D. villosus in Holland has been accompanied by the decline of Gammarus duebeni and G. tigrinus populations within invaded systems. This study examined what may happen when D. villosus eventually encounters native Dutch populations of Gammarus pulex, and how factors such as microhabitat and food resource availability could contribute to a future species replacement or coexistence. A laboratory simulation of a lake/pooled area of river indicated that G. pulex and D. villosus differed in distribution within the same habitat, and showed that although the distribution of the native differed in the presence of the invader, the presence of the native had no effect on the distribution of the invader. Gammarus pulex suffered severe intraguild predation (IGP) from D. villosus in mixed species treatments with no reciprocal predation of D. villosus by G. pulex. This IGP occurred regardless of whether no alternative food resource was available (91% of the G. pulex population eliminated after 7 days), or alternative foods/prey were available to excess, such as leaf material (85%), chironomids (77%) or fish food flakes (74%). We conclude that although differential microdistribution of the two species could promote coexistence, the presence of alternative foods/prey resources, merely slow the rate of IGP and replacement of the native by the invader. Our study joins one of an increasing number emphasizing the potential damaging impacts of D. villosus on native communities. [source]


    Foraging capacities and effects of competitive release on ontogenetic diet shift in bream, Abramis brama

    OIKOS, Issue 2 2002
    Anders Persson
    Bream (Abramis brama) undergo ontogenetic diet shift from zooplankton to benthic macroinvertebrates, but the switching size may be highly variable. To unravel under what conditions bream are pelagic versus benthic foragers, we experimentally determined size-dependent foraging capacities on three prey types from the planktivory and benthivory niche; zooplankton, visible and buried macroinvertebrates. From these data we derived predictions of size-dependent diet preferences from estimates of prey value and competitive ability, and tested these predictions on diet data from the field. Planktivorous foraging capacity described a hump-shaped relationship with bream length that peaked for small bream of 67 mm total length. Benthivory capacity increased with increasing bream size, irrespective if benthic prey were visible on the sediment surface or buried in the sediment. From the experimental data and relationships of metabolic demand we calculated minimum resource requirement for maintenance (MRR) for each of the prey categories used in experiments. MRR increased with bream size for both zooplankton and visible chironomids, but decreased with bream size for buried chironomids, suggesting that intermediate sized bream (120,300 mm) may be competitively sandwiched between small and large bream that are more competitive planktivores and benthivores, respectively. Prey value estimates and competitive abilities qualitatively predicted diet shift in a bream population being released from competition. Competitive release did not change the diet of the largest size-class feeding on an optimal diet of benthic invertebrates both before and after competitive release. However, profound diet shifts towards benthic macroinvertebrates were recorded for intermediate size-classes that fed on a suboptimal diet prior to competitive release. Thus, laboratory estimates of size-dependent foraging capacity of bream in planktivorous and benthivorous feeding niches provided useful information on size-specific competitive ability, and successfully predicted diet preference in the field. [source]


    Influence of UV Radiation on Four Freshwater Invertebrates,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2000
    Alina Cywinska
    ABSTRACT Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m,2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B,sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280,290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates. [source]