Chiral Synthesis (chiral + synthesis)

Distribution by Scientific Domains


Selected Abstracts


ChemInform Abstract: Improved Chiral Synthesis of Ravuconazole.

CHEMINFORM, Issue 38 2009
Lin Xu
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Chiral synthesis of secondary alcohols using Geotrichum candidum

CHIRALITY, Issue 9 2002
Kaoru Nakamura
Abstract Chiral synthesis of secondary alcohols of both the (S)- and (R)-enantiomer with extremely high enantioselectivities (up to >99% ee) using a biocatalyst, Geotrichum candidum, is reviewed. Resting cell and dried-cell preparation using acetone were applied to oxidation, reduction, and deracemization reactions. Many methods to improve the reactivity and enantioselectivity of the reactions were developed. For example, additives such as secondary alcohols and hydrophobic resin (AmberliteÔ XAD) were used in nonaqueous reaction media such as organic and supercritical solvents as well as in aqueous ones. As a result, optically pure alcohols of both enantiomers were synthesized on a gram scale. Chirality 14:703,708, 2002. © 2002 Wiley-Liss, Inc. [source]


Development of a silica monolith microbioreactor entrapping highly activated lipase and an experiment toward integration with chromatographic separation of chiral esters

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 17 2007
Koei Kawakami
Abstract Microbioreactors are effective for high-throughput production of expensive products from small amounts of substrates. Lipases are versatile enzymes for chiral syntheses, and are highly activated when immobilized in alkyl-substituted silicates by the sol,gel method. For practical application of sol,gel immobilized lipases to a flow system, a microbioreactor loaded with a macroporous silica monolith is well suited, because it can be easily integrated with a chromatographic separator for optical resolution. We attempted to develop a microbioreactor containing a silica monolith-immobilized lipase. A nonshrinkable silica monolith was first formed from a 4:1 mixture of methyltrimethoxysilane (MTMS) and tetramethoxysilane (TMOS). It was then coated with silica precipitates entrapping lipase, derived from a 4:1 mixture of n -butyltrimethoxysilane (BTMS) and TMOS. As a result, monolith treated with the BTMS-based silicate entrapping lipase exhibited approximately ten times higher activity than nontreated monolith-immobilized lipase derived from the MTMS-based silicate, in transesterification between glycidol and vinyl n -butyrate in isooctane. A commercially available chiral column was connected in series to the monolith microbioreactor, and a pulse of substrate solution was supplied at the inlet of the reactor. Successful resolution of the racemic ester produced was achieved in the chromatographic column. [source]


Chirality and chemical processes: A few afterthoughts

CHIRALITY, Issue 1 2008
Pedro Cintas
Abstract Chirality and chiral have become terms that pervade a wide range of disciplines in physical and life sciences. Although such terms are precisely defined, their use often engenders confusion and ambiguity. Perhaps, the most improper use of chirality, yet widely accepted, is related to its association with stereodynamics and physico-chemical transformations, such as chiral discrimination, chiral resolution, chiral recognition, chiral synthesis, and so on. Even though this conceptual perversion has been highlighted by renowned stereochemists, it has become a recurring keyword and a hot message in modern literature. It is timely to renew the correct use and context in forums such as the present journal, adding further reflections that may help both beginners and practitioners. This short article is not intended to criticize or highlight errors, but rather to encourage a level of rigor and the use of statements, which should be universally correct. Chirality, 2007. © 2007 Wiley-Liss, Inc. [source]