Chiral Secondary Alcohols (chiral + secondary_alcohol)

Distribution by Scientific Domains


Selected Abstracts


ChemInform Abstract: Palladium-Catalyzed Enantioselective Oxidation of Chiral Secondary Alcohols: Access to Both Enantiomeric Series.

CHEMINFORM, Issue 50 2008
David C. Ebner
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


ChemInform Abstract: A Sequential Application of Kinetic Resolution and Polymer-Supported Scavenging for the Isolation of Chiral Secondary Alcohols.

CHEMINFORM, Issue 48 2001
Armando Cordova
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


The asymmetric synthesis of (R,R)-formoterol via transfer hydrogenation with polyethylene glycol bound Rh catalyst in PEG2000 and water

CHIRALITY, Issue 2 2010
Ling Huang
Abstract (R,R)-formoterol was synthesized in seven steps with 4-hydroxyl-3-nitro-acetophenone as the starting material. The key intermediate, the chiral secondary alcohol 4, was prepared via Rh-catalyzed asymmetric transfer hydrogenation with (S,S)-PEGBsDPEN as the ligand and sodium formate as the hydrogen donor under mild conditions. With a mixture of PEG 2000 and water as the reaction media, the catalyst system could be recycled four times. Chirality, 2010. © 2009 Wiley-Liss, Inc. [source]


Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: A quantitative model

PROTEIN SCIENCE, Issue 6 2000
Tanja Schulz
Abstract The lipase from Pseudomonas cepacia represents a widely applied catalyst for highly enantioselective resolution of chiral secondary alcohols. While its stereopreference is determined predominantly by the substrate structure, stereoselectivity depends on atomic details of interactions between substrate and lipase. Thirty secondary alcohols with published E values using P. cepacia lipase in hydrolysis or esterification reactions were selected, and models of their octanoic acid esters were docked to the open conformation of P. cepacia lipase. The two enantiomers of 27 substrates bound preferentially in either of two binding modes: the fast-reacting enantiomer in a productive mode and the slow-reacting enantiomer in a nonproductive mode. Nonproductive mode of fast-reacting enantiomers was prohibited by repulsive interactions. For the slow-reacting enantiomers in the productive binding mode, the substrate pushes the active site histidine away from its proper orientation, and the distance d(HN, , Oalc) between the histidine side chain and the alcohol oxygen increases. d(HN, , Oalc) was correlated to experimentally observed enantioselectivity: in substrates for which P. cepacia lipase has high enantioselectivity (E > 100), d(HN, , Oalc) is>2.2 Å for slow-reacting enantiomers, thus preventing efficient catalysis of this enantiomer. In substrates of low enantioselectivity (E < 20), the distance d(HN, , Oalc) is less than 2.0 Å, and slow- and fast-reacting enantiomers are catalyzed at similar rates. For substrates of medium enantioselectivity (20 < E< 100), d(HN, , Oalc) is around 2.1 Å. This simple model can be applied to predict enantioselectivity of P. cepacia lipase toward a broad range of secondary alcohols. [source]


Mesoporous Silica Nanosphere-Supported Chiral Ruthenium Catalysts: Synthesis, Characterization, and Asymmetric Hydrogenation Studies

CHEMCATCHEM, Issue 3 2009
David
Abstract Chiral RuCl2,diphosphine,diamine complexes with a pendant siloxy group were synthesized and characterized by NMR spectroscopy and mass spectrometry. The Ru complexes were grafted onto three different types of mesoporous silica nanospheres (MSNs) through the siloxane linkage, and the resulting MSN-supported Ru catalysts were highly active for the asymmetric hydrogenation of aromatic ketones, to afford chiral secondary alcohols, and racemic arylaldehydes, to give chiral primary alcohols. Excellent activities and enantioselectivities were observed for these MSN-supported Ru catalysts owing to readily accessible and uniform catalytic sites within the large channels of MSNs (diameters of >2,nm) and short diffusion lengths for the organic compounds as a result of small nanoparticle sizes of less than 1,,m. This catalyst immobilization strategy with MSN supports should be amenable to the design of many highly active and enantioselective heterogeneous asymmetric catalysts. [source]


Highly Dispersed Ruthenium Hydroxide Supported on Titanium Oxide Effective for Liquid-Phase Hydrogen-Transfer Reactions

CHEMISTRY - A EUROPEAN JOURNAL, Issue 36 2008
Kazuya Yamaguchi Dr.
Abstract Supported ruthenium hydroxide catalysts (Ru(OH)x/support) were prepared with three different TiO2 supports (anatase TiO2 (TiO2(A), BET surface area: 316,m2,g,1), anatase TiO2 (TiO2(B), 73,m2,g,1), and rutile TiO2 (TiO2(C), 3.2,m2,g,1)), as well as an Al2O3 support (160,m2,g,1). Characterizations with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), and X-ray absorption fine structure (XAFS) showed the presence of monomeric ruthenium(III) hydroxide and polymeric ruthenium(III) hydroxide species. Judging from the coordination numbers of the nearest-neighbor Ru atoms and the intensities of the ESR signals, the amount of monomeric hydroxide species increased in the order of Ru(OH)xchiral secondary alcohols and the reduction of carbonyl compounds and allylic alcohols. The catalytic activities of Ru(OH)x/TiO2(A) for these hydrogen-transfer reactions were at least one order of magnitude higher than those of previously reported heterogeneous catalysts, such as Ru(OH)x/Al2O3. These catalyses were truly heterogeneous, and the catalysts recovered after the reactions could be reused several times without loss of catalytic performance. The reaction rates monotonically increased with an increase in the amount of monomeric ruthenium hydroxide species, which suggests that the monomeric species are effective for these hydrogen-transfer reactions. [source]


Synthetic Scope and Mechanistic Studies of Ru(OH)x/Al2O3 -Catalyzed Heterogeneous Hydrogen-Transfer Reactions

CHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2005
Kazuya Yamaguchi Dr.
Abstract Three kinds of hydrogen-transfer reactions, namely racemization of chiral secondary alcohols, reduction of carbonyl compounds to alcohols using 2-propanol as a hydrogen donor, and isomerization of allylic alcohols to saturated ketones, are efficiently promoted by the easily prepared and inexpensive supported ruthenium catalyst Ru(OH)x/Al2O3. A wide variety of substrates, such as aromatic, aliphatic, and heterocyclic alcohols or carbonyl compounds, can be converted into the desired products, under anaerobic conditions, in moderate to excellent yields and without the need for additives such as bases. A larger scale, solvent-free reaction is also demonstrated: the isomerization of 1-octen-3-ol with a substrate/catalyst ratio of 20,000/1 shows a very high turnover frequency (TOF) of 18,400 h,1, with a turnover number (TON) that reaches 17,200. The catalysis for these reactions is intrinsically heterogeneous in nature, and the Ru(OH)x/Al2O3 recovered after the reactions can be reused without appreciable loss of catalytic performance. The reaction mechanism of the present Ru(OH)x/Al2O3 -catalyzed hydrogen-transfer reactions were examined with monodeuterated substrates. After the racemization of (S)-1-deuterio-1-phenylethanol in the presence of acetophenone was complete, the deuterium content at the ,-position of the corresponding racemic alcohol was 91,%, whereas no deuterium was incorporated into the ,-position during the racemization of (S)-1-phenylethanol-OD. These results show that direct carbon-to-carbon hydrogen transfer occurs via a metal monohydride for the racemization of chiral secondary alcohols and reduction of carbonyl compounds to alcohols. For the isomerization, the ,-deuterium of 3-deuterio-1-octen-3-ol was selectively relocated at the ,-position of the corresponding ketones (99,% D at the ,-position), suggesting the involvement of a 1,4-addition of ruthenium monohydride species to the ,,,-unsaturated ketone intermediate. The ruthenium monohydride species and the ,,,-unsaturated ketone would be formed through alcoholate formation/,-elimination. Kinetic studies and kinetic isotope effects show that the RuH bond cleavage (hydride transfer) is included in the rate-determining step. [source]