Home About us Contact | |||
Chip System (chip + system)
Selected AbstractsA self-contained polymeric 2-DE chip system for rapid and easy analysisELECTROPHORESIS, Issue 18 2006Keisuke Usui Abstract We developed a polymeric 2-DE chip system. The chip consisted of an IEF region, an SDS-PAGE region, a valveless connection port, and a sample introduction port. A "junction structure" as a valveless connection port, which allowed separating and connecting the first- and second-dimensional gels, was fabricated between their regions. A "solution inlet" as a sample introduction port was fabricated to perform the liquid and sample introductions without solution leakage. Simultaneous sample monitoring was performed using the on-chip detection system. The performances of the system were demonstrated using commercially available proteins as a standard specimen and tissue-extracted proteins as the real samples. All procedures were employed without any movement of relocation part. This new 2-D separation system realized improved labor-intensive operations and a reduced experimental time. [source] Modulation of gene expression by extracellular pH variations in human fibroblasts: A transcriptomic and proteomic studyPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2003Maja A. Bumke Abstract Homeostasis of the intracellular ionic concentration, in particular that of hydrogen ions, is pivotal to the maintenance of cell function and viability. Nonetheless, pH fluctuations in both the intracellular and the extracellular compartments can occurr during development, in physiological processes and in disease. The influence of pH variations on gene expression has been studied in different model systems, but only for a limited number of genes. We have performed a broad range analysis of the patterns of gene expression in normal human dermal fibroblasts at two different pH values (in the presence and in the absence of serum), with the aim of getting a deeper insight into the regulation of the transcriptional program as a response to a pH change. Using the Affymetrix gene chip system, we found that the expression of 2068 genes (out of 12,565) was modulated by more than two-fold at 24, 48 or 72 h after the shift of the culture medium pH to a more acidic value, stanniocalcin 1 being a remarkable example of a strongly up-regulated gene. Genes displaying a modulated pattern of expression included, among others, cell cycle regulators (consistent with the observation that acidic pH abolishes the growth of fibroblasts in culture) and relevant extracellular matrix (ECM) components. Extracellular matrix protein 2, a protein with a restricted pattern of expression in adult human tissues, was found to be remarkably overexpressed as a consequence of serum starvation. Since ECM components, whose expression is controlled by pH, have been used as targets for biomolecular intervention, we have complemented the Affymetrix analysis with a two-dimensional polyacrylamide gel electrophoresis analysis of proteins which are differentially secreted by fibroblasts at acidic or basic pH. Mass spectrometric analysis of more than 650 protein spots allowed the identification of 170 protein isoforms or fragments, belonging to 40 different proteins. Some proteins were only expressed at basic pH (including, for instance, tetranectin), while others (e.g., agrin) were only detectable at acidic pH. Some of the identified proteins may represent promising candidate targets for biomedical applications, e.g., for antibody-mediated vascular targeting strategies. [source] Chip-mass spectrometry for glycomic studiesMASS SPECTROMETRY REVIEWS, Issue 2 2009Laura Bindila Abstract The introduction of micro- and nanochip front end technologies for electrospray mass spectrometry addressed a major challenge in carbohydrate analysis: high sensitivity structural determination and heterogeneity assessment in high dynamic range mixtures of biological origin. Chip-enhanced electrospray ionization was demonstrated to provide reproducible performance irrespective of the type of carbohydrate, while the amenability of chip systems for coupling with different mass spectrometers greatly advance the chip/MS technique as a versatile key tool in glycomic studies. A more accurate representation of the glycan repertoire to include novel biologically-relevant information was achieved in different biological sources, asserting this technique as a valuable tool in glycan biomarker discovery and monitoring. Additionally, the integration of various analytical functions onto chip devices and direct hyphenation to MS proved its potential for glycan analysis during the recent years, whereby a new analytical tool is on the verge of maturation: lab-on-chip MS glycomics. The achievements until early beginning of 2007 on the implementation of chip- and functional integrated chip/MS in systems glycobiology studies are reviewed here. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:223,253, 2009 [source] |