Home About us Contact | |||
Chinook Salmon Populations (chinook + salmon_population)
Selected AbstractsEVOLUTION OF TEMPORAL ISOLATION IN THE WILD: GENETIC DIVERGENCE IN TIMING OF MIGRATION AND BREEDING BY INTRODUCED CHINOOK SALMON POPULATIONSEVOLUTION, Issue 4 2000Thomas P. Quinn Abstract. The timing of migration and breeding are key life-history traits; they are not only adaptations of populations to their environments, but can serve to increase reproductive isolation, facilitating further divergence among populations. As part of a study of divergence of chinook salmon, Oncorhynchus tshawytscha, populations, established in New Zealand from a common source in the early 1900s, we tested the hypotheses that the timing of migration and breeding are under genetic control and that the populations genetically differ in these traits despite phenotypic overlap in timing in the wild. Representatives of families from two populations were collected within a day or two of each other, reared in a common environment, and then released to sea from each of two different rivers, while other family representatives were retained in fresh water to maturity. The date of maturation of fish held in fresh water and the dates of return from the ocean and maturation of fish released to sea all showed significant differences between the two populations and among families within populations. The very high heritabilities and genetic correlations estimated for migration and maturation date indicated that these traits would respond rapidly to selection. Combined with the results of related studies on these chinook salmon populations, it appears that spawning time may not only evolve during the initial phases of divergence, but it may play an important role in accelerating divergence in other traits. [source] Monte Carlo Inference for State,Space Models of Wild Animal PopulationsBIOMETRICS, Issue 2 2009Ken B. Newman Summary We compare two Monte Carlo (MC) procedures, sequential importance sampling (SIS) and Markov chain Monte Carlo (MCMC), for making Bayesian inferences about the unknown states and parameters of state,space models for animal populations. The procedures were applied to both simulated and real pup count data for the British grey seal metapopulation, as well as to simulated data for a Chinook salmon population. The MCMC implementation was based on tailor-made proposal distributions combined with analytical integration of some of the states and parameters. SIS was implemented in a more generic fashion. For the same computing time MCMC tended to yield posterior distributions with less MC variation across different runs of the algorithm than the SIS implementation with the exception in the seal model of some states and one of the parameters that mixed quite slowly. The efficiency of the SIS sampler greatly increased by analytically integrating out unknown parameters in the observation model. We consider that a careful implementation of MCMC for cases where data are informative relative to the priors sets the gold standard, but that SIS samplers are a viable alternative that can be programmed more quickly. Our SIS implementation is particularly competitive in situations where the data are relatively uninformative; in other cases, SIS may require substantially more computer power than an efficient implementation of MCMC to achieve the same level of MC error. [source] EVOLUTION OF TEMPORAL ISOLATION IN THE WILD: GENETIC DIVERGENCE IN TIMING OF MIGRATION AND BREEDING BY INTRODUCED CHINOOK SALMON POPULATIONSEVOLUTION, Issue 4 2000Thomas P. Quinn Abstract. The timing of migration and breeding are key life-history traits; they are not only adaptations of populations to their environments, but can serve to increase reproductive isolation, facilitating further divergence among populations. As part of a study of divergence of chinook salmon, Oncorhynchus tshawytscha, populations, established in New Zealand from a common source in the early 1900s, we tested the hypotheses that the timing of migration and breeding are under genetic control and that the populations genetically differ in these traits despite phenotypic overlap in timing in the wild. Representatives of families from two populations were collected within a day or two of each other, reared in a common environment, and then released to sea from each of two different rivers, while other family representatives were retained in fresh water to maturity. The date of maturation of fish held in fresh water and the dates of return from the ocean and maturation of fish released to sea all showed significant differences between the two populations and among families within populations. The very high heritabilities and genetic correlations estimated for migration and maturation date indicated that these traits would respond rapidly to selection. Combined with the results of related studies on these chinook salmon populations, it appears that spawning time may not only evolve during the initial phases of divergence, but it may play an important role in accelerating divergence in other traits. [source] Effects of natural selection on patterns of DNA sequence variation at the transferrin, somatolactin, and p53 genes within and among chinook salmon (Oncorhynchus tshawytscha) populationsMOLECULAR ECOLOGY, Issue 7 2000Michael J. Ford Abstract This paper describes DNA sequence variation within and among four populations of chinook salmon (Oncorhynchus tshawytscha) at the transferrin, somatolactin and p53 genes. Patterns of variation among salmon species at the transferrin gene have been hypothesized to be shaped by positive natural selection for new alleles because the rate of nonsynonymous substitution is significantly greater than the rate of synonymous substitution. The twin goals of this study were to determine if the history of selection among salmon species at the transferrin gene is also reflected in patterns of intraspecific variation in chinook salmon, and to look for evidence of local adaptation at the transferrin gene by comparing patterns of nonsynonymous and synonymous variation among chinook salmon populations. The analyses presented here show that unlike patterns of variation between species, there is no evidence of greater differentiation among chinook salmon populations at nonsynonymous compared to synonymous sites. There is also no evidence of a reduction of within-species variation due to the hitchhiking effect at the transferrin gene, although in some populations nonsynonymous and synonymous derived mutations are both at higher frequencies than expected under a simple neutral model. Population size weighted selection coefficients (4Ns) that are consistent with both the inter and intraspecific data range from ~10 to ~235, and imply that between 1 and 40% of new nonsynonymous mutations at the transferrin gene have been beneficial. [source] |