Chesapeake Bay (chesapeake + bay)

Distribution by Scientific Domains

Terms modified by Chesapeake Bay

  • chesapeake bay region

  • Selected Abstracts


    ULTRASTRUCTURAL CHARACTERIZATION OF THE LYTIC CYCLE OF AN INTRANUCLEAR VIRUS INFECTING THE DIATOM CHAETOCEROS CF. WIGHAMII(BACILLARIOPHYCEAE) FROM CHESAPEAKE BAY, USA,

    JOURNAL OF PHYCOLOGY, Issue 4 2009
    Yoanna Eissler
    Numerous microalgal species are infected by viruses that have the potential to control phytoplankton dynamics by reducing host populations, preventing bloom formation, or causing the collapse of blooms. Here we describe a virus infecting the diatom Chaetoceros cf. wighamii Brightw. from the Chesapeake Bay. To characterize the morphology and lytic cycle of this virus, we conducted a time-course experiment, sampling every 4 h over 72 h following viral inoculation. In vivo fluorescence began to decline 16 h after inoculation and was reduced to <19% of control cultures by the end of experiment. TEM confirmed infection within the first 8 h of inoculation, as indicated by the presence of virus-like particles (VLP) in the nuclei. VLP were present in two different arrangements: rod-like structures that appeared in cross-section as paracrystalline arrays of hexagonal-shaped profiles measuring 12 ± 2 nm in diameter and uniformly electron-dense hexagonal-shaped particles measuring , 22,28 nm in diameter. Nuclei containing paracrystalline arrays were most prevalent early in the infection cycle, while cells containing VLP increased and then declined toward the end of the cycle. The proportion of nuclei containing both paracrystalline arrays and VLP remained relatively constant. This pattern suggests that rod-like paracrystalline arrays fragmented to produce icosahedral VLP. C. cf. wighamii nuclear inclusion virus (CwNIV) is characterized by a high burst size (averaged 26,400 viruses per infected cell) and fast generation time that could have ecological implications on C. cf. wighamii population control. [source]


    Foraging behavior of an estuarine predator, the blue crab Callinectes sapidus in a patchy environment

    ECOGRAPHY, Issue 1 2000
    Mary E. Clark
    To define general principles of predator-prey dynamics in an estuarine subtidal environment, we manipulated predator density (the blue crab, Callinectes sapidus) and prey (the clam, Macoma balthica) patch distribution in large field enclosures in the Rhode River subestuary of the central Chesapeake Bay. The primary objectives were to determine whether predators forage in a way that maximizes prey consumption and to assess how their foraging success is affected by density of conspecifics. We developed a novel ultrasonic telemetry system to observe behavior of individual predators with unprecedented detail. Behavior of predators was more indicative of optimal than of opportunistic foraging. Predators appeared responsive to the overall quality of prey in their habitat. Rather than remaining on a prey patch until depletion, predators appeared to vary their patch use with quality of the surrounding environment. When multiple (two) prey patches were available, residence time of predators on a prey patch was shorter than when only a single prey patch was available. Predators seemed to move among the prey patches fairly regularly, dividing their foraging time between the patches and consuming prey from each of them at a similar rate. That predators more than doubled their consumption of prey when we doubled the number of prey (by adding the second patch) is consistent with optimizing behaviors - rather than with an opportunistic increase in prey consumption brought about simply by the addition of more prey. Predators at high density, however, appeared to interfere with each other's foraging success, reflected by their lower rates of prey consumption. Blue crabs appear to forage more successfully (and their prey to experience higher mortality) in prey patches located within 15,20 meters of neighboring patch, than in isolated patches. Our results are likely to apply, at least qualitatively, to other crustacean-bivalve interactions, including those of commercial interest; their quantitative applicability will depend on the mobility of other predators and the scale of patchiness they perceive. [source]


    Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments

    ENVIRONMENTAL MICROBIOLOGY, Issue 4 2008
    Adrian K. Sharma
    Summary Proteorhodopsins are light-energy-harvesting transmembrane proteins encoded by genes recently discovered in the surface waters of the world's oceans. Metagenomic data from the Global Ocean Sampling expedition (GOS) recovered 2674 proteorhodopsin-related sequences from 51 aquatic samples. Four of these samples were from non-marine environments, specifically, Lake Gatun within the Panama Canal, Delaware Bay and Chesapeake Bay and the Punta Cormorant Lagoon in Ecuador. Rhodopsins related to but phylogenetically distinct from most sequences designated proteorhodopsins were present at all four of these non-marine sites and comprised three different clades that were almost completely absent from marine samples. Phylogenomic analyses of genes adjacent to those encoding these novel rhodopsins suggest affiliation to the Actinobacteria, and hence we propose to name these divergent, non-marine rhodopsins ,actinorhodopsins'. Actinorhodopsins conserve the acidic amino acid residues critical for proton pumping and their genes lack genomic association with those encoding photo-sensory transducer proteins, thus supporting a putative ion pumping function. The ratio of recA and radA to rhodopsin genes in the different environment types sampled within the GOS indicates that rhodopsins of one type or another are abundant in microbial communities in freshwater, estuarine and lagoon ecosystems, supporting an important role for these photosystems in all aquatic environments influenced by sunlight. [source]


    Environmental factors affecting the levels of legacy pesticides in the airshed of Delaware and Chesapeake Bays, USA

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010
    Anubha Goel
    Abstract Organochlorine insecticides and their degradation products contribute to toxicity in Chesapeake Bay, USA, sediments and affect the reproductive health of avian species in the region; however, little is known of atmospheric sources or temporal trends in concentrations of these chemicals. Weekly air (n,=,265) and daily rain samples (n,=,494) were collected over 2000 to 2003 from three locations in the Delmarva Peninsula, USA. Pesticides were consistently present in the gas phase with infrequent detection in the particle phase. Hexachlorocyclohexanes (HCHs) and cis - and trans -chlordane were detected most frequently (95,100%), and cis - and trans -nonachlor, oxychlordane, heptachlor, heptachlor epoxide, dieldrin, and 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4,-DDE) were also detected frequently. The highest mean air concentrations were for dieldrin (60,84,pg/m3), ,-HCH (37,83,pg/m3), and 4,4,-DDE (16,80,pg/m3). Multiple regression analyses of air concentrations with temperature and wind conditions using modified Clausius-Clapeyron equations explained only 30 to 60% of the variability in concentration for most chemicals. Comparison of the air concentrations and enthalpy of air,surface exchange values at the three sites indicate sources of chlordanes and ,-HCH sources are primarily from long-range transport. However, examination of chlordane isomer ratios indicates some local and regional contributions, and ,-HCH, 4,4,-DDE, dieldrin, heptachlor, heptachlor epoxide, and oxychlordane also have local or regional sources, possibly from contaminated soils. Median rain sample volumes of 1 to 3 L led to infrequent detections in rain; however, average measured concentrations were 2 to 10 times higher than in the Great Lakes. Dissipation half-lives in air were well below 10 years for all chemicals and below published values for the Great Lakes except dieldrin, which did not decline during the sample period. Environ. Toxicol. Chem. 2010;29:1893,1906. © 2010 SETAC [source]


    Agricultural pesticides and selected degradation products in five tidal regions and the main stem of Chesapeake Bay, USA

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2007
    Laura L. McConnell
    Abstract Nutrients, sediment, and toxics from water sources and the surrounding airshed are major problems contributing to poor water quality in many regions of the Chesapeake Bay, an important estuary located in the mid-Atlantic region of the United States. During the early spring of 2000, surface water samples were collected for pesticide analysis from 18 stations spanning the Chesapeake Bay. In a separate effort from July to September of 2004, 61 stations within several tidal regions were characterized with respect to 21 pesticides and 11 of their degradation products. Three regions were located on the agricultural Delmarva Peninsula: The Chester, Nanticoke, and Pocomoke Rivers. Two regions were located on the more urban western shore: The Rhode and South Rivers and the Lower Mobjack Bay, including the Back and Poquoson Rivers. In both studies, herbicides and their degradation products were the most frequently detected chemicals. In 2000, atrazine and metolachlor were found at all 18 stations. In 2004, the highest parent herbicide concentrations were found in the upstream region of Chester River. The highest concentration for any analyte in these studies was for the ethane sulfonic acid of metolachlor (MESA) at 2,900 ng/L in the Nanticoke River. The degradation product MESA also had the greatest concentration of any analyte in the Pocomoke River (2,100 ng/L) and in the Chester River (1,200 ng/L). In the agricultural tributaries, herbicide degradation product concentrations were more strongly correlated with salinity than the parent herbicides. In the two nonagricultural watersheds on the western shore, no gradient in herbicide concentrations was observed, indicating the pesticide source to these areas was water from the Bay main stem. [source]


    Modeling and predicting complex space,time structures and patterns of coastal wind fields

    ENVIRONMETRICS, Issue 5 2005
    Montserrat Fuentes
    Abstract A statistical technique is developed for wind field mapping that can be used to improve either the assimilation of surface wind observations into a model initial field or the accuracy of post-processing algorithms run on meteorological model output. The observed wind field at any particular location is treated as a function of the true (but unknown) wind and measurement error. The wind field from numerical weather prediction models is treated as a function of a linear and multiplicative bias and a term which represents random deviations with respect to the true wind process. A Bayesian approach is taken to provide information about the true underlying wind field, which is modeled as a stochastic process with a non-stationary and non-separable covariance. The method is applied to forecast wind fields from a widely used mesoscale numerical weather prediction (NWP) model (MM5). The statistical model tests are carried out for the wind speed over the Chesapeake Bay and the surrounding region for 21 July 2002. Coastal wind observations that have not been used in the MM5 initial conditions or forecasts are used in conjunction with the MM5 forecast wind field (valid at the same time that the observations were available) in a post-processing technique that combined these two sources of information to predict the true wind field. Based on the mean square error, this procedure provides a substantial correction to the MM5 wind field forecast over the Chesapeake Bay region. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Cohort splitting in bluefish, Pomatomus saltatrix, in the US mid-Atlantic Bight

    FISHERIES OCEANOGRAPHY, Issue 3 2008
    JODY L. CALLIHAN
    Abstract Atlantic bluefish exhibit cohort splitting, whereby two modes of juvenile recruits originate from spatially distinct spring- and summer-spawning regions in US Atlantic shelf waters. We evaluate the pattern of cohort splitting in a transition area (US Maryland coastal region and Chesapeake Bay) between the two major spawning regions. Spring and summer cohorts were differentially represented in Maryland estuarine (Chesapeake Bay) and coastal waters. The spring cohort was dominant in Chesapeake Bay, but was not well represented in the ocean environment, and the converse true for the summer cohort. We hypothesized that ocean temperatures control the bimodal spawning behavior and extent of cohort splitting. As evidence, we observed an intervening early summer cohort produced in years when shelf temperatures during early summer were suitably warm for spawning. In most years however, two dominant cohorts were evident. We propose that vernal warming dynamics in the mid-Atlantic Bight influence spawning behavior and the resultant bimodal pattern of seasonal juvenile cohort production commonly observed along the US east coast. [source]


    Mechanistic links between climate and fisheries along the east coast of the United States: explaining population outbursts of Atlantic croaker (Micropogonias undulatus)

    FISHERIES OCEANOGRAPHY, Issue 1 2007
    JONATHAN A. HARE
    Abstract Climate has been linked to variation in marine fish abundance and distribution, but often the mechanistic processes are unknown. Atlantic croaker (Micropogonias undulatus) is a common species in estuarine and coastal areas of the mid-Atlantic and southeast coasts of the U.S. Previous studies have identified a correlation between Atlantic croaker abundance and winter temperatures in Chesapeake Bay, and have determined thermal tolerances of juveniles. Here we re-examine the hypothesis that winter temperature variability controls Atlantic croaker population dynamics. Abundance indices were analyzed at four life history stages from three regions along the east coast of the U.S. Correlations suggest that year-class strength is decoupled from larval supply and is determined by temperature-linked, overwinter survival of juveniles. Using a relation between air and water temperatures, estuarine water temperature was estimated from 1930 to 2002. Periods of high adult catch corresponded with warm winter water temperatures. Prior studies indicate that winter temperature along the east coast is related to the North Atlantic Oscillation (NAO); variability in catch is also correlated with the NAO, thereby demonstrating a link between Atlantic croaker dynamics, thermal limited overwinter survival, and the larger climate system of the North Atlantic. We hypothesize that the environment drives the large-scale variability in Atlantic croaker abundance and distribution, but fishing and habitat loss decrease the resiliency of the population to periods of poor environmental conditions and subsequent weak year classes. [source]


    Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland

    HYDROLOGICAL PROCESSES, Issue 11 2010
    Olivia H. Devereux
    Abstract Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land-based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank-erosion measurements, sediment budget and other methods. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Telotroch formation, survival, and attachment in the epibiotic peritrich Zoothamnium intermedium (Ciliophora, Oligohymenophorea)

    INVERTEBRATE BIOLOGY, Issue 3 2008
    Laura R.P. Utz
    Abstract. Aspects of the life cycle of the peritrich ciliate Zoothamnium intermedium, an epibiont on calanoid copepods in the Chesapeake Bay, were investigated using host and epibiont cultures. Experiments were designed to characterize the formation, survival, and attachment of free-swimming stages (telotrochs) and to assess whether telotrochs preferentially attach to primary (Acartia tonsa and Eurytemora affinis) or alternate hosts from the zooplankton community (the rotifer Brachionus plicatilis, barnacle nauplii, polychaete larvae, and a harpacticoid copepod). The results showed that telotroch formation started 2 h after the death of the host, with >90% of the zooids leaving the host carapace within 7 h. Formation of telotrochs was triggered only by the death of the host, failing to occur when the host was injured or unable to swim. Telotrochs failed to attach to non-living substrates and survived for only 14 h in the absence of host organisms, suggesting that members of Z. intermedium are obligate epibionts. Attachment success decreased with telotroch age, indicating that colonization success in nature may strongly depend on the ability to find a suitable host in a short period of time. Individuals exhibited no preferences in colonizing juvenile or adult stages of A. tonsa or E. affinis. While telotrochs were able to colonize barnacle nauplii and the harpacticoid copepod in the absence of individuals of A. tonsa or E. affinis, they did not attach to the rotifers or polychaete larvae. Telotrochs preferentially colonized individuals of A. tonsa when in the presence of other non-calanoid host species. [source]


    ULTRASTRUCTURAL CHARACTERIZATION OF THE LYTIC CYCLE OF AN INTRANUCLEAR VIRUS INFECTING THE DIATOM CHAETOCEROS CF. WIGHAMII(BACILLARIOPHYCEAE) FROM CHESAPEAKE BAY, USA,

    JOURNAL OF PHYCOLOGY, Issue 4 2009
    Yoanna Eissler
    Numerous microalgal species are infected by viruses that have the potential to control phytoplankton dynamics by reducing host populations, preventing bloom formation, or causing the collapse of blooms. Here we describe a virus infecting the diatom Chaetoceros cf. wighamii Brightw. from the Chesapeake Bay. To characterize the morphology and lytic cycle of this virus, we conducted a time-course experiment, sampling every 4 h over 72 h following viral inoculation. In vivo fluorescence began to decline 16 h after inoculation and was reduced to <19% of control cultures by the end of experiment. TEM confirmed infection within the first 8 h of inoculation, as indicated by the presence of virus-like particles (VLP) in the nuclei. VLP were present in two different arrangements: rod-like structures that appeared in cross-section as paracrystalline arrays of hexagonal-shaped profiles measuring 12 ± 2 nm in diameter and uniformly electron-dense hexagonal-shaped particles measuring , 22,28 nm in diameter. Nuclei containing paracrystalline arrays were most prevalent early in the infection cycle, while cells containing VLP increased and then declined toward the end of the cycle. The proportion of nuclei containing both paracrystalline arrays and VLP remained relatively constant. This pattern suggests that rod-like paracrystalline arrays fragmented to produce icosahedral VLP. C. cf. wighamii nuclear inclusion virus (CwNIV) is characterized by a high burst size (averaged 26,400 viruses per infected cell) and fast generation time that could have ecological implications on C. cf. wighamii population control. [source]


    2 Influence of mixed host populations on success of the parasitic dinoflagellate Amoebophrya

    JOURNAL OF PHYCOLOGY, Issue 2003
    T.-N. Armstrong
    Parasitic dinoflagellates of the genus Amoebophrya commonly infect bloom-forming dinoflagellates of Chesapeake Bay, including Akashiwo sanguinea and Karlodinium micrum. While different strains of Amoebophrya appear host specific, infective dinospores liberated from A. sanguinea do enter the cytoplasm of K. micrum, but fail to complete the infection cycle. Thus, in mixed-species dinoflagellate blooms, interference from inappropriate hosts may influence the success of Amoebophrya spp. To explore that possibility, we conducted laboratory studies to examine the effect of the toxic dinoflagellate K. micrum on success of Amoebophrya from A. sanguinea. Treatments consisted of A. sanguinea (1000/mL) plus corresponding dinospores (10,000/mL) in the presence of different K. micrum densities (0 to 100,000/mL). We also examined whether changes in parasite success were due to interaction with K. micrum cells, or from indirect effects of bacteria or dissolved substances present in K. micrum cultures. Success of Amoebophrya was unaffected by low densities of K. micrum, but decreased at high concentrations of K. micrum. Reduced parasite success appeared to result from combined effects of non-host cells and dissolved substances in K. micrum media. Results suggest that parasitism of A. sanguinea in Chesapeake Bay would be reduced when K. micrum is a major component of mixed-species blooms. [source]


    Impact of Dredging on Phosphorus Transport in Agricultural Drainage Ditches of the Atlantic Coastal Plain,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2008
    Francirose Shigaki
    Abstract:, Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic Coastal Plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches. Sediments from two drainage ditches that had been monitored for seven years and had similar characteristics (flow, P loadings, sediment properties) were sampled (0-5 cm) after one of the ditches had been dredged, which removed fine textured sediments (clay = 41%) with high organic matter content (85 g/kg) and exposed coarse textured sediments (clay = 15%) with low organic matter content (2.2 g/kg). Sediments were subjected to a three-phase experiment (equilibrium, uptake, and release) in recirculating 10-m-long, 0.2-m-wide, and 5-cm-deep flumes to evaluate their role as sources and sinks of P. Under conditions of low initial P concentrations in flume water, sediments from the dredged ditch released 13 times less P to the water than did sediments from the ditch that had not been dredged, equivalent to 24 mg dissolved P. However, the sediments from the dredged ditch removed 19% less P (76 mg) from the flume water when it was spiked with dissolved P to approximate long-term runoff concentrations. Irradiation of sediments to destroy microorganisms revealed that biological processes accounted for up to 30% of P uptake in the coarse textured sediments of the dredged ditch and 18% in the fine textured sediments of the undredged ditch. Results indicate that dredging of coastal plain drainage ditches can potentially impact the P buffering capacity of ditches draining agricultural soils with a high potential for P runoff. [source]


    Integrated Modular Modeling of Water and Nutrients From Point and Nonpoint Sources in the Patuxent River Watershed,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2008
    Zhi-Jun Liu
    Abstract:, We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall-runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program-Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (,2%). The model predictions for loads of nutrients were also good (20-30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1. [source]


    Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences

    MOLECULAR ECOLOGY, Issue 10 2002
    C. Grunwald
    Abstract Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 101 to 104, but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty-nine mtDNA nucleotide-substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2,5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide-substitution haplotypes and length-variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once-glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five-region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units. [source]


    Photobleaching of Dissolved Organic Material from a Tidal Marsh-Estuarine System of the Chesapeake Bay,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
    Maria Tzortziou
    ABSTRACT Wetlands and tidal marshes in the Rhode River estuary of the Chesapeake Bay act as important sources of dissolved organic carbon and strongly absorbing dissolved organic matter (DOM) for adjacent estuarine waters. The effects of solar exposure on the photochemical degradation of colored DOM (CDOM) were examined for material derived from different sources (estuarine and freshwater parts of the Rhode River, sub-watershed stream, marshes) in this estuarine ecosystem. Consistent with changes in fluorescence emission, absorption loss upon exposure to different portions of the solar spectrum (i.e. different long-pass cut-off filters) occurred across the entire spectrum but the wavelength of maximum photobleaching decreased as the cut-off wavelength of the filter decreased. Our results illustrate that solar exposure can cause either an increase or a decrease in the CDOM absorption spectral slope, SCDOM, depending on the spectral quality of irradiation and, thus, on the parameters (e.g. atmospheric composition, concentration of UV-absorbing water constituents) that affect the spectral characteristics of the light to which CDOM is exposed. We derived a simple spectral model for describing the effects of solar exposure on CDOM optical quality. The model accurately, and consistently, predicted the observed dependence of CDOM photobleaching on the spectral quality of solar exposure. [source]


    An Introduction to a Special Issue on Large-Scale Submerged Aquatic Vegetation Restoration Research in the Chesapeake Bay: 2003,2008

    RESTORATION ECOLOGY, Issue 4 2010
    Deborah Shafer
    The Chesapeake Bay is one of the world's largest estuaries. Dramatic declines in the abundance and distribution of submerged aquatic vegetation (SAV) in the Chesapeake Bay over the last few decades led to a series of management decisions aimed at protecting and restoring SAV populations throughout the bay. In 2003, the Chesapeake Bay Program established a goal of planting 405 ha of SAV by 2008. Realizing that such an ambitious goal would require the development of large-scale approaches to SAV restoration, a comprehensive research effort was organized, involving federal and state agencies, academia, and the private sector. This effort differs from most other SAV restoration programs due to a strong emphasis on the use of seeds rather than plants as planting stock, a decision based on the relatively low labor requirements of seeding. Much of the research has focused on the development of tools and techniques for using seeds in large-scale SAV restoration. Since this research initiative began, an average of 13.4 ha/year of SAV has been planted in the Chesapeake Bay, compared to an average rate of 3.6 ha/year during the previous 21 years (1983,2003). The costs of conducting these plantings are on a downward trend as the understanding of the limiting factors increases and as new advances are made in applied research and technology development. Although this effort was focused in the Chesapeake Bay region, the tools and techniques developed as part of this research should be widely applicable to SAV restoration efforts in other areas. [source]


    Large-Scale Zostera marina (eelgrass) Restoration in Chesapeake Bay, Maryland, USA.

    RESTORATION ECOLOGY, Issue 4 2010
    Associated Costs, Part I: A Comparison of Techniques
    The Chesapeake Bay, like many other temperate estuaries, has exhibited dramatic declines in the abundance of submerged aquatic vegetation (SAV) during the later half of the twentieth century. Because of the functions SAV serve in maintaining a healthy estuarine ecosystem, SAV restoration has become an important component of Chesapeake Bay restoration. Specifically, recent water quality improvements in areas from which populations of Zostera marina (eelgrass) have been extirpated have suggested that Z. marina restoration could succeed. Early restoration efforts involved transplanting Z. marina plants from healthy source beds to restoration locations, but this was labor intensive, time consuming, expensive, and potentially detrimental to donor beds. This multi-year project investigated new techniques for large-scale Z. marina seed collection and processing and compared two seed dispersal methods to evaluate cost effectiveness. Tens of millions of mature Z. marina seeds were collected through snorkeling, SCUBA, or with a mechanical harvester. Seed storage conditions and processing techniques were manipulated in order to maximize seed yield. Seeds were dispersed using two methods: spring seed buoys and fall seed broadcasts. Our costs for planting 1 ha of bottom with Z. marina seeds ranged from $6,674 to $165,699 depending on seeding density and dispersal method used. The average cost per Z. marina seed was $0.17. Interannual variations in seed collection yield and seed viability after summer storage had great impact on final costs. Our results suggest that the use of seeds for large-scale Z. marina restoration offers a competitive advantage to more traditional transplanting methods. [source]


    Estuarine Restoration of Submersed Aquatic Vegetation: The Nursery Bed Effect

    RESTORATION ECOLOGY, Issue 4 2010
    Angela Hengst
    The historic decline of submersed aquatic vegetation (SAV) in mesohaline regions of Chesapeake Bay, United States involved a diversity of plant species. The recent modest recovery is mostly, however, associated with a single, prolific but ephemeral species, Ruppia maritima. Two previously abundant and more stable species, Potamogeton perfoliatus and Stuckenia pectinata, have shown virtually no evidence of recovery. Based on previous studies that demonstrated the ability of R. maritima stands to enhance water clarity and nutrient conditions for SAV growth, we hypothesized that these beds would serve as effective "nursery" areas to incite transplant success for other SAV. We conducted experiments in a two-phase study at small and large spatial scales designed to explore this "nursery effect" as a restoration approach to increase plant species diversity. The first phase was conducted at small spatial scales to test effects of patch density by planting P. perfoliatus and S. pectinata into bare, sparse, and densely vegetated areas within three similar R. maritima beds in a tributary of Chesapeake Bay. Mean seasonal percent survivorship and shoot density were significantly higher in bare patches compared to vegetated patches. In the second phase of the study, P. perfoliatus was transplanted into separate R. maritima beds of different densities to test the effect of bed scale plant density on P. perfoliatus survival and growth. Transplant success of P. perfoliatus was positively correlated with the density of R. maritima among all sites. [source]


    Settlement and Survival of the Oyster Crassostrea virginica on Created Oyster Reef Habitats in Chesapeake Bay

    RESTORATION ECOLOGY, Issue 2 2007
    Janet A. Nestlerode
    Abstract Efforts to restore the Eastern oyster (Crassostrea virginica) reef habitats in Chesapeake Bay typically begin with the placement of hard substrata to form three-dimensional mounds on the seabed to serve as a base for oyster recruitment and growth. A shortage of oyster shell for creating large-scale reefs has led to widespread use of other materials such as Surf clamshell (Spisula solidissima), as a substitute for oyster shell. Oyster recruitment, survival, and growth were monitored on intertidal reefs constructed from oyster and Surf clamshell near Fisherman's Island, Virginia, U.S.A. and on a subtidal Surf clamshell reef in York River, Virginia, U.S.A. At the intertidal reefs, oyster larvae settlement occurred at similar levels on both substrate types throughout the monitoring period but higher levels of post-settlement mortality occurred on clamshell reefs. The oyster shell reef supported greater oyster growth and survival and offered the highest degree of structural complexity. On the subtidal clamshell reef, the quality of the substrate varied with reef elevation. Large shell fragments and intact valves were scattered around the reef base, whereas small, tightly packed shell fragments paved the crest and flank of the reef mound. Oysters were more abundant and larger at the base of this reef and less abundant and smaller on the reef crest. The availability of interstitial space and appropriate settlement surfaces is hypothesized to account for the observed differences in oyster abundance across the reef systems. Patterns observed emphasize the importance of appropriate substrate selection for restoration activities to enhance natural recovery where an underlying habitat structure is destroyed. [source]


    Microzooplankton grazing on harmful dinoflagellate blooms: Are ciliates or heterotrophic dinoflagellates important?

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2005
    DIANE K. STOECKER
    Microzooplankton grazing can be important in regulating growth of dinoflagellate populations, including species responsible for harmful algal blooms. In the Chesapeake Bay region, microzooplankton community grazing coefficients on small cell-size dinoflagellates are often greater than potential gross growth coefficients of dinoflagellates, and thus grazing may prevent bloom formation. Who are the major microzooplankton grazers on small dinoflagellates? Ciliates or other dinoflagellates? Data from Chesapeake Bay and its tributaries indicate both; sometimes ciliates and sometimes dinoflagellates are the major grazers. The importance of ciliates and heterotrophic dinoflagellates varies with season and location, but often one group dominates the microzooplankton assemblage. Specific clearance and division rates of ciliates are higher than that of heterotrophic dinoflagellates, thus it could be expected that ciliates would be the dominant microzooplankton grazers. However, during summer, small heterotrophic dinoflagellates are often the dominant grazers on small dinoflagelllates in the mesohaline Bay. Differential predation by copepods on ciliates may be responsible for this pattern. When microzooplankton community grazing is less than dinoflagellate cell division, red tides may result. Thus, it is important to understand the factors controlling both ciliate and heterotrophic dinoflagellate populations and their grazing impacts. [source]


    Infection of Gymnodinium sanguineum by the Dinoflagellate Amoebophryasp.: Effect of Nutrient Environment on Parasite Generation Time, Reproduction, and Infectivity

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 5 2000
    WONHO YIH
    ABSTRACT. Preliminary attempts to culture Amoebophrya sp., a parasite of Gymnodinium sanguineum from Chesapeake Bay, indicated that success may be influenced by water quality. To explore that possibility, we determined development time, reproductive output, and infectivity of progeny (i.e. dinospores) for Amoebophrya sp. maintained on G. sanguineum grown in four different culture media. The duration of the parasite's intracellular growth phase showed no significant difference among treatments; however, the time requiredfor completion of multiple parasite generations did, with elapsed time to the middle of the third generation being shorter in nutrient-repletemedia. Parasites of hosts grown in nutrient-replete medium also produced three to four times more dinospores than those infectinghosts under low-nutrient conditions, with mean values of 380 and 130 dinospores/host, respectively. Dinospore production relative tohost biovolume also differed, with peak values of 7.4 per 1,000 ,m3 host for nutrient-replete medium and 4.8 per 1,000 ,m3 host fornutrient-limited medium. Furthermore, dinospores produced by "high-nutrient" parasites had a higher success rate than those formedby "low-nutrient" parasites. Results suggest that Amoebophrya sp. is well adapted to exploit G. sanguineum populations in nutrient-enrichedenvironments. [source]


    Environmental factors affecting the levels of legacy pesticides in the airshed of Delaware and Chesapeake Bays, USA

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010
    Anubha Goel
    Abstract Organochlorine insecticides and their degradation products contribute to toxicity in Chesapeake Bay, USA, sediments and affect the reproductive health of avian species in the region; however, little is known of atmospheric sources or temporal trends in concentrations of these chemicals. Weekly air (n,=,265) and daily rain samples (n,=,494) were collected over 2000 to 2003 from three locations in the Delmarva Peninsula, USA. Pesticides were consistently present in the gas phase with infrequent detection in the particle phase. Hexachlorocyclohexanes (HCHs) and cis - and trans -chlordane were detected most frequently (95,100%), and cis - and trans -nonachlor, oxychlordane, heptachlor, heptachlor epoxide, dieldrin, and 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4,-DDE) were also detected frequently. The highest mean air concentrations were for dieldrin (60,84,pg/m3), ,-HCH (37,83,pg/m3), and 4,4,-DDE (16,80,pg/m3). Multiple regression analyses of air concentrations with temperature and wind conditions using modified Clausius-Clapeyron equations explained only 30 to 60% of the variability in concentration for most chemicals. Comparison of the air concentrations and enthalpy of air,surface exchange values at the three sites indicate sources of chlordanes and ,-HCH sources are primarily from long-range transport. However, examination of chlordane isomer ratios indicates some local and regional contributions, and ,-HCH, 4,4,-DDE, dieldrin, heptachlor, heptachlor epoxide, and oxychlordane also have local or regional sources, possibly from contaminated soils. Median rain sample volumes of 1 to 3 L led to infrequent detections in rain; however, average measured concentrations were 2 to 10 times higher than in the Great Lakes. Dissipation half-lives in air were well below 10 years for all chemicals and below published values for the Great Lakes except dieldrin, which did not decline during the sample period. Environ. Toxicol. Chem. 2010;29:1893,1906. © 2010 SETAC [source]