Home About us Contact | |||
Chemosensory Systems (chemosensory + system)
Selected AbstractsA new fate for old cells: brush cells and related elementsJOURNAL OF ANATOMY, Issue 4 2005A. Sbarbati Abstract Over the past 50 years, hundreds of studies have described those cells that are characterized by a brush of rigid apical microvilli with long rootlets, and which are found in the digestive and respiratory apparatuses. These cells have been given names such as brush cells, tuft cells, fibrillovesicular cells, multivesicular cells and caveolated cells. More recently, it has been realized that all these elements may represent a single cell type, probably with a chemosensory role, even if other functions (e.g. secretory or absorptive) seem to be possible. Very recent developments have permitted a partial definition of the chemical code characterizing these elements, revealing the presence of molecules involved in chemoreceptorial cell signalling. A molecular cascade, similar to those characterizing the gustatory epithelium, seems to be present in these elements. These new data suggest that these elements can be considered solitary chemosensory cells with the presence of the apical ,brush' as an inconsistent feature. They seem to comprise a diffuse chemosensory system that covers large areas (probably the whole digestive and respiratory apparatuses) with analogies to chemosensory systems described in aquatic vertebrates. [source] A common gene exclusion mechanism used by two chemosensory systemsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2009Luca Capello Abstract Sensory coding strategies within vertebrates involve the expression of a limited number of receptor types per sensory cell. In mice, each vomeronasal sensory neuron transcribes monoallelically a single V1R pheromone receptor gene, chosen from a large V1R repertoire. The nature of the signals leading to this strict receptor expression is unknown, but is apparently based on a negative feedback mechanism initiated by the transcription of the first randomly chosen functional V1R gene. We show, in vivo, that the genetic replacement of the V1rb2 pheromone receptor coding sequence by an unrelated one from the odorant receptor gene M71 maintains gene exclusion. The expression of this exogenous odorant receptor in vomeronasal neurons does not trigger the transcription of odorant receptor-associated signalling molecules. These results strongly suggest that despite the different odorant and vomeronasal receptor expression sites, function and transduction cascades, a common mechanism is used by these chemoreceptors to regulate their transcription. [source] Phenotypic analyses of frz and dif double mutants of Myxococcus xanthusFEMS MICROBIOLOGY LETTERS, Issue 2 2000Wenyuan Shi Abstract Myxococcus xanthus is a Gram-negative gliding bacterium that aggregates and develops into multicellular fruiting bodies in response to starvation. Two chemosensory systems (frz and dif), both of which are homologous to known chemotaxis proteins, were previously identified through characterization of various developmental mutants. This study aims to examine the interaction between these two systems since both of them are required for fruiting body formation of M. xanthus. Through detailed phenotypic analyses of frz and dif double mutants, we found that both frz and dif are involved in cellular reversal and social motility; however, the frz genes are epistatic in controlling cellular reversal, whereas the dif genes are epistatic in controlling social motility. The study suggests that the integration of these two chemotaxis systems may play a central role in controlling the complicated social behaviors of M. xanthus. [source] A new fate for old cells: brush cells and related elementsJOURNAL OF ANATOMY, Issue 4 2005A. Sbarbati Abstract Over the past 50 years, hundreds of studies have described those cells that are characterized by a brush of rigid apical microvilli with long rootlets, and which are found in the digestive and respiratory apparatuses. These cells have been given names such as brush cells, tuft cells, fibrillovesicular cells, multivesicular cells and caveolated cells. More recently, it has been realized that all these elements may represent a single cell type, probably with a chemosensory role, even if other functions (e.g. secretory or absorptive) seem to be possible. Very recent developments have permitted a partial definition of the chemical code characterizing these elements, revealing the presence of molecules involved in chemoreceptorial cell signalling. A molecular cascade, similar to those characterizing the gustatory epithelium, seems to be present in these elements. These new data suggest that these elements can be considered solitary chemosensory cells with the presence of the apical ,brush' as an inconsistent feature. They seem to comprise a diffuse chemosensory system that covers large areas (probably the whole digestive and respiratory apparatuses) with analogies to chemosensory systems described in aquatic vertebrates. [source] |