Chemoattractant

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Chemoattractant

  • cell chemoattractant
  • chemokine monocyte chemoattractant
  • monocyte chemoattractant
  • neutrophil chemoattractant

  • Terms modified by Chemoattractant

  • chemoattractant protein

  • Selected Abstracts


    CXC and CC chemokines induced in human renal epithelial cells by inflammatory cytokines

    APMIS, Issue 7 2009
    ELISKA THORBURN (NEE KRASNA)
    Human renal epithelial cells might play an important role during the allograft rejection by producing chemokines in response to proinflammatory cytokines such as tumor necrosis factor (TNF)-, and interleukin (IL)-1, produced by endothelial and epithelial cells early after transplantation. The production of chemokines allows inflammatory cells to be drawn into the kidney graft and therefore plays a critical role in the pathophysiologic processes that lead to the rejection of renal transplant. In this process, two chemokine superfamilies, the CC and the CXC chemokines, are the most important. The CC chemokines target mainly monocytes and T lymphocytes, while most of the CXC chemokines attract neutrophils. We showed in our study that in vitro, in unstimulated cells, basal mRNA expression of CXC chemokines (Gro,, Gro,, Gro,, ENA-78 and GCP-2, IL-8) that attract neutrophils was detectable and expression of these genes and chemokine release were increased in TNF-,- and IL-1,-induced renal epithelial cells. Most of the CC chemokines [monocyte chemotactic protein-1 (MCP-1), macrophage Inflammatory protein 1 beta (MIP-1,), regulated upon activation, normal T cell expressed and secreted (RANTES) and macrophage inflammatory protein (MIP-3,)] showed detectable mRNA expression only after stimulation with proinflammatory cytokines and not in control cells. TNF-, seems to induce preferably the expression of RANTES, MCP-1, interferon-inducible protein (IP-10) and Interferon-Inducible T-cell Alpha Chemoattractant (I-TAC), while IL-1, induces mainly IL-8 and epithelial neutrophil-activating peptide 78 (ENA-78). [source]


    TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells

    ACTA PHYSIOLOGICA, Issue 3 2010
    S. Liu
    Abstract Aim:, TRAF6 is a unique adaptor protein of the tumour necrosis factor receptor-associated factor family that mediates both tumour necrosis factor receptor (TNFR) and interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signalling. Activation of IL-1R/TLR and TNFR pathways in renal tubular cells contributes to renal injury. This study aimed to investigate if blockade of lipopolysaccharide (LPS)-triggered TLR4 signalling by small interfering RNA (siRNA) targeting TRAF6 protects survival and inhibits inflammatory response in isolated rat renal proximal tubular cells (PTCs). Methods:, PTCs isolated from F344 rat kidneys were transfected with chemically synthesized siRNA targeting TRAF6 mRNA. Real-time quantitative PCR was applied to measure mRNA level of TRAF6, TNF-,, IL-6 and monocyte chemoattractant protein-1 (MCP-1). Protein levels of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase, caspase 3 and cleaved caspase 3 were evaluated by Western blotting. Cell viability was analysed with XTT reagents. Results:, We found that the TRAF6 gene was effectively silenced in PTCs using siRNA. TRAF6 knockdown resulted in reduced TNF-, and IL-6 mRNA expression upon LPS challenge. LPS-induced phosphorylation of JNK and p38 was attenuated in TRAF6 siRNA-transfected cells while the change in the phosphorylation of ERK was not remarkable. TRAF6 knockdown was associated with increased cell viability and reduced protein level of cleaved caspase-3, both, in the absence and presence of LPS. Conclusion:, Our studies suggest that TRAF6 knockdown may inhibit inflammatory response and promote cell survival upon LPS challenge in primary rat proximal renal tubular cells. [source]


    Caveolin-1 polarization in migrating endothelial cells is directed by substrate topology not chemoattractant gradient

    CYTOSKELETON, Issue 11 2006
    Virginie Santilman
    Abstract Polarization is a hallmark of migrating cells, and an asymmetric distribution of proteins is essential to the migration process. Caveolin-1 is highly polarized in migrating endothelial cells (EC). Several studies have shown caveolin-1 accumulation in the front of migrating EC while others report its accumulation in the EC rear. In this paper we address these conflicting results on polarized localization of caveolin-1. We find evidence for the hypothesis that different modes of locomotion lead to differences in protein polarization. In particular, we show that caveolin-1 is primarily localized in the rear of cells migrating on a planar substrate, but in the front of cells traversing a three-dimensional pore. We also show that a chemoattractant, present either as a gradient or ubiquitously in the medium, does not alter caveolin-1 localization in cells in either mode of locomotion. Thus we conclude that substrate topology, and not the presence of a chemoattractant, directs the polarization of caveolin-1 in motile ECs. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


    Cryopreservable neutrophil surrogates: Granule-poor, motile cytoplasts from polymorphonuclear leukocytes home to inflammatory lesions in vivo

    CYTOSKELETON, Issue 5 2006
    Stephen E. Malawista
    Abstract Cytokineplasts (CKP) are anucleate, motile, granule-poor fragments induced from polymorphonuclear leukocytes on surfaces by the brief application of heat. Derived from the peripheral cytoplasm and membranes of PMN, they retain the sensing, transducing, and effector mechanisms necessary for chemotaxis and phagocytosis, and appear to represent a functional, self-purification of the motile apparatus. Unlike their parent PMN, CKP are cryopreservable. We have shown that they can adhere to endothelial cell monolayers, open interendothelial cell junctions, and migrate to the abluminal side when stimulated by a chemoattractant. Employing an animal model, we now show that, given intravenously, they can home to an inflammatory target lesion in vivo. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


    The chemotaxis defect of Shwachman-Diamond Syndrome leukocytes

    CYTOSKELETON, Issue 3 2004
    Vesna Stepanovic
    Abstract Shwachman-Diamond Syndrome (SDS) is a rare autosomal recessive, multisystem disorder presenting in childhood with intermittent neutropenia and pancreatic insufficiency. It is characterized by recurrent infections independent of neutropenia, suggesting a functional neutrophil defect. While mutations at a single gene locus (SBDS) appear to be responsible for SDS in a majority of patients, the function of that gene and a specific defect in SDS neutrophil behavior have not been elucidated. Therefore, employing 2D and 3D computer-assisted motion analysis systems, we have analyzed the basic motile behavior and chemotactic responsiveness of individual polymorphonuclear leukocytes (PMNs) of 14 clinically diagnosed SDS patients. It is demonstrated that the basic motile behavior of SDS PMNs is normal in the absence of chemoattractant, that SDS PMNs respond normally to increasing and decreasing temporal gradients of the chemoattractant fMLP, and that SDS PMNs exhibit a normal chemokinetic response to a spatial gradient of fMLP. fMLP receptors were also distributed uniformly through the plasma membrane of SDS PMNs as in control PMNs. SDS PMNs, however, were incapable of orienting in and chemotaxing up a spatial gradient of fMLP. This unique defect in orientation was manifested by the PMNs of every SDS patient tested. The PMNs of an SDS patient who had received an allogenic hematopoietic stem cell transplant, as well as PMNs from a cystic fibrosis patient, oriented normally. These results suggest that the defect in SDS PMNs is in a specific pathway emanating from the fMLP receptor that is involved exclusively in regulating orientation in response to a spatial gradient of fMLP. This pathway must function in parallel with additional pathways, intact in SDS patients, that emanate from the fMLP receptor and regulate responses to temporal rather than spatial changes in receptor occupancy. Cell Motil. Cytoskeleton 57:158,174, 2004. © 2004 Wiley-Liss, Inc. [source]


    Comparison of the effects of HGF, BDNF, CT-1, CNTF, and the branchial arches on the growth of embryonic cranial motor neurons

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002
    Arifa Naeem
    Abstract In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth-promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth-promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101,114, 2002 [source]


    Caucasian patients with type 2 diabetes mellitus have elevated levels of monocyte chemoattractant protein-1 that are not influenced by the ,2518 A,G promoter polymorphism

    DIABETES OBESITY & METABOLISM, Issue 5 2005
    B. Zietz
    Aim:, To investigate the association of serum levels and the ,2518 A,G promoter polymorphism of the gene for chemokine monocyte chemoattractant protein-1 (MCP-1), a major chemoattractant of monocytes and activated lymphocytes, with metabolic parameters as well as insulin, leptin and the cytokines tumour necrosis factor-, (TNF-,) and interleukin-6 (IL-6) in 534 Caucasian patients with type 2 diabetes mellitus. Methods:, MCP-1 concentrations were measured by enzyme-linked immunosorbent assay. MCP-1 genotyping was performed by RFLP analysis in a subset of 426 patients. Results:, Two hundred and thirty-one (54.2%) patients were homozygous for the wildtype allele (AA), 156 (36.6%) were heterozygous (AG) and 39 (9.2%) were homozygous for the mutated allele (GG). Allelic frequency was similar to non-diabetic populations (wildtype allele A: 0.73; mutated allele G: 0.27). MCP-1 mean concentrations and percentiles were substantially higher in non-diabetic populations but were not influenced by the genotype (AA: 662.0 ± 323.0 pg/ml; AG: 730.6 ± 491.4 pg/ml; GG: 641.2 ± 323.8 pg/ml). MCP-1 serum levels and genotypes were only marginally related to hormones (insulin and leptin) and cytokines (TNF-, and IL-6). Conclusions:, This is the first study providing MCP-1 levels, percentiles and genotype frequency in a large and representative cohort of patients with type 2 diabetes mellitus. Compared to the literature, MCP-1 levels were found to be substantially higher in patients with type 2 diabetes mellitus. In contrast, genotype frequencies were similar compared to those in non-diabetic patients and were not related to MCP-1 levels. The mechanisms behind these elevated MCP-1 serum levels in type 2 diabetes are not to be explained by simple associations with hormones, cytokines or genotypes. [source]


    Chemotaxis of Ralstonia sp.

    ENVIRONMENTAL MICROBIOLOGY, Issue 10 2006
    SJ98 towards p -nitrophenol in soil
    Summary Bioremediation of contaminated sites has been accepted as an efficient and cheaper alternative to physicochemical means of remediation in several cases. Although chemotactic behaviour of many bacteria has been studied earlier and assays have been developed to study bacterial chemotaxis in semi-solid media, this phenomenon has never been demonstrated in soil. For bioremediation application it is important to know whether bacteria actually migrate through the heterogenous soil medium towards a gradient of a particular chemoattractant. In the present study we have successfully demonstrated bacterial chemotaxis of a Ralstonia sp. SJ98 in soil microcosm using qualitative and quantitative plate and tray assays. The migration of bacteria has been established using several methods such as plate counting, vital staining and flow cytometry and slot blot hybridization. A non-chemotactic p- nitrophenol utilizing strain Burkholderia cepacia RKJ200 has been used as negative control. Our work clearly substantiates the hypothesis that chemotactic bacteria may enhance in situ bioremediation of toxic pollutants from soils and sediments. [source]


    Fatty acids as metabolic mediators in innate immunity

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 10 2009
    A. Kopp
    Abstract Background, Increasing data support the hypothesis of a local and systemic crosstalk between adipocytes and monocytes mediated by fatty acids. The aim of this study was to characterize the immunomodulatory effects of a large panel of fatty acids on cytokines and chemokines in monocytic THP-1 cells and primary human monocytes. We tested whether anti-inflammatory fatty acids are able to inhibit the binding of lipopolysaccharide (LPS) to its receptor, toll-like receptor/MD-2 (TLR4/MD-2). Materials and methods, Resistin, monocyte chemoattractant protein-1 (MCP-1) and tumour necrosis factor (TNF) were measured by enzyme-linked immunosorbent assay. Proteins were analysed by Western blot. A designed Flag-tagged TLR4/MD-2 fusion protein (LPS trap) was used to investigate the effect of fatty acids on binding of LPS to its receptor. In 30 patients with type 2 diabetes mellitus (T2D), the correlation of serum triglyceride levels with LPS-induced monocyte activation was analysed. Results, Eleven fatty acids investigated exerted differential effects on the monocytic release of cytokines and chemokines. Eicosapentaenoic acid had potent anti-inflammatory effects on human primary monocytes and THP-1 cells; 100 and 200 ,M eicosapentaenoic acid dose-dependently inhibited LPS binding to the LPS trap. LPS-induced release of monocytic MCP-1 and TNF was significantly and positively correlated with serum triglyceride levels in 30 patients with T2D. Conclusions, Monocytic activation is differentially regulated by fatty acids and depends on triglyceride levels in T2D. The main finding of the present study shows that eicosapentaenoic acid inhibits the specific binding of LPS to TLR4/MD-2. Eicosapentaenoic acid represents a new anti-inflammatory LPS-antagonist. [source]


    Hierarchy of eosinophil chemoattractants: role of p38 mitogen-activated protein kinase

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2006
    Petra Schratl
    Abstract Several chemoattractants can regulate the recruitment of eosinophils to sites of inflammation, but the hierarchy among them is unknown. We observed here that eosinophil chemotaxis towards eotaxin or 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) was amplified up to sixfold in the presence of prostaglandin (PG) D2. This effect was only seen in eosinophils, and not in neutrophils or basophils. Pretreatment with the chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) antagonist ramatroban prevented the PGD2 enhancement of eosinophil migrations. In contrast, eotaxin or 5-oxo-ETE inhibited the migration of eosinophils towards PGD2. 5-oxo-ETE enhanced the chemotaxis to eotaxin, while eotaxin had no effect on 5-oxo-ETE-induced migration. 5-oxo-ETE induced the phosphorylation of p38 mitogen-activated protein kinase, and inhibition of p38 mitogen-activated protein kinase by SB-202190 converted the effect of 5-oxo-ETE on the chemotaxis to PGD2 from inhibition to enhancement. The presence of blood or plasma markedly decreased the sensitivity of eosinophils to eotaxin or 5-oxo-ETE, while responses to PGD2 were unaltered. In conclusion, PGD2 might be an initial chemoattractant, since it maintains its potency in the circulation and augments the responsiveness of eosinophils to other chemoattractants. In contrast, eotaxin seems to be an end-point chemoattractant, since it has reduced efficacy in blood and is capable of down-modulating eosinophil responsiveness to other chemoattractants. [source]


    Human resting CD16,, CD16+ and IL-2-, IL-12-, IL-15- or IFN-,-activated natural killer cells differentially respond to sphingosylphosphorylcholine, lysophosphatidylcholine and platelet-activating factor

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2005
    Yixin Jin
    Abstract The phosphorylcholine-containing lipid lysophosphatidylcholine (LPC) is abundant in the bloodstream, whereas sphingosylphosphorylcholine (SPC) and platelet-activating factor (PAF) highly accumulate at inflamed sites. Utilizing RT-PCR, flow cytometry and immunoblot analyses, we show for the first time that ovarian cancer G,protein-coupled receptor,1, the receptor for SPC, is expressed in IL-2-, IL-12- and IL-15-activated but not in resting CD16,, resting CD16+ or IFN-,-activated NK,cells. Similarly, G2 accumulation and PAF receptor are variably expressed in these subsets of NK,cells. SPC, LPC and PAF differentially induce the chemotaxis of resting and activated NK,cells. In the chemotaxis assay, it is observed that resting CD16,CD56bright and CD16+CD56dim cells predominantly respond to LPC, whereas activated NK,cells, regardless of the sort of stimulus, robustly respond to PAF. SPC is also a potent chemoattractant for IL-2-, IL-12- and IL-15- but not for IFN-,-activated NK,cells. Further analysis shows that, depending on the cytokine pattern of NK,cell activation, phosphorylcholine-containing lipids differentially affect IFN-, secretion by these cells. Our results provide one possible explanation for the tissue compartmentation of NK,cells and their ability to secrete IFN-,. Furthermore, these results may provide novel information regarding NK,cell regulation during inflammation. [source]


    Potential role of thioredoxin in immune responses in intestinal lamina propria T,lymphocytes

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2005
    Bernd Sido
    Abstract Thioredoxin (TRX) is a ubiquitous oxidoreductase with strong co-cytokine, chemoattractant and anti-apoptotic activities. TRX expression was found to be particularly elevated in the intestinal mucosa, where its physiologic function is entirely unknown. Here, we demonstrate a high level of TRX expression in lamina propria T,cells (LP-T) as opposed to autologous peripheral blood T,lymphocytes (PB-T). Addition of recombinant human TRX (rhTRX) to PB-T enhances TRX gene expression. This autoregulation involves the calcineurin signaling pathway, as rhTRX antagonizes the cyclosporine,A (CsA)- and tacrolimus-mediated suppression of TRX gene expression. Similarly, rhTRX reverses the suppression of IL-2 mRNA production by CsA and enhances cytokine production preferentially in prestimulated cells. The differential TRX expression in LP-T versus PB-T may thus contribute to the high-level, CsA-resistant IL-2 production characteristic for CD2-stimulated LP-T. Inversely, inactivation of TRX in LP-T through inhibition of TRX reductase abolishes cytokine gene expression. TRX may play a key role in the specialized intestinal microenvironment in amplifying immediate immune responses of LP-T whenever appropriate costimulation of LP-T is provided. [source]


    Transcriptional upregulation of inflammatory cytokines in human intestinal epithelial cells following Vibrio cholerae infection

    FEBS JOURNAL, Issue 17 2007
    Arunava Bandyopadhaya
    Coordinated expression and upregulation of interleukin-1,, interleukin-1,, tumor necrosis factor-,, interleukin-6, granulocyte,macrophage colony-stimulating factor, interleukin-8, monocyte chemotactic protein-1 (MCP-1) and epithelial cell derived neutrophil activator-78, with chemoattractant and proinflammatory properties of various cytokine families, were obtained in the intestinal epithelial cell line Int407 upon Vibrio cholerae infection. These proinflammatory cytokines also showed increased expression in T84 cells, except for interleukin-6, whereas a striking dissimilarity in cytokine expression was observed in Caco-2 cells. Gene expression studies of MCP-1, granulocyte,macrophage colony-stimulating factor, interleukin-1,, interleukin-6 and the anti-inflammatory cytokine transforming growth factor-, in Int407 cells with V. cholerae culture supernatant, cholera toxin, lipopolysaccharide and ctxA mutant demonstrated that, apart from cholera toxin and lipopolysaccharide, V. cholerae culture supernatant harbors strong inducer(s) of interleukin-6 and MCP-1 and moderate inducer(s) of interleukin-1, and granulocyte,macrophage colony-stimulating factor. Cholera toxin- or lipopolysaccharide-induced cytokine expression is facilitated by activation of nuclear factor-,B (p65 and p50) and cAMP response element-binding protein in Int407 cells. Studies with ctxA mutants of V. cholerae revealed that the mutant activates the p65 subunit of nuclear factor-,B and cAMP response element-binding protein, and as such the activation is mediated by cholera toxin-independent factors as well. We conclude that V. cholerae elicits a proinflammatory response in Int407 cells that is mediated by activation of nuclear factor-,B and cAMP response element-binding protein by cholera toxin, lipopolysaccharide and/or other secreted products of V. cholerae. [source]


    Role of Ca2+/calmodulin regulated signaling pathways in chemoattractant induced neutrophil effector functions

    FEBS JOURNAL, Issue 18 2002
    Comparison with the role of phosphotidylinositol-3 kinase
    In human neutrophils, both changes in intracellular Ca2+ concentrations, [Ca2+]i, and activation of phosphatidylinositol-3 kinase (PtdIns3K) have been proposed to play a role in regulating cellular function induced by chemoattractants. In this study we have investigated the role of [Ca2+]i and its effector molecule calmodulin in human neutrophils. Increased [Ca2+]i alone was sufficient to induce phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2), p38 mitogen activated kinase (p38 MAPK), protein kinase B (PKB) and glycogen synthase kinase-3, (GSK-3,). Inhibition of calmodulin using a calmodulin antagonist N -(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7), did not effect N -formyl-methionyl-leucyl-phenylalanine (fMLP) induced ERK, p38 MAPK or GSK-3, phosphorylation, but attenuated fMLP induced PKB phosphorylation. PCR analysis of human neutrophil cDNA demonstrated variable expression of members of the Ca2+/calmodulin-dependent kinase family. The roles of calmodulin and PtdIns3K in regulating neutrophil effector functions were further compared. Neutrophil migration was abrogated by inhibition of calmodulin, while no effect was observed when PtdIns3K was inhibited. In contrast, production of reactive oxygen species was sensitive to inhibition of both calmodulin and PtdIns3K. Finally, we demonstrated that chemoattractants are unable to modulate neutrophil survival, despite activation of PtdIns3K and elevation [Ca2+]i. Taken together, our data indicate critical roles for changes in [Ca2+]i and calmodulin activity in regulating neutrophil migration and respiratory burst and suggest that chemoattractant induced PKB phosphorylation may be mediated by a Ca2+/calmodulin sensitive pathway in human neutrophils. [source]


    Monocyte chemoattractant protein-1 (MCP-1) produced via NF-,B signaling pathway mediates migration of amoeboid microglia in the periventricular white matter in hypoxic neonatal rats

    GLIA, Issue 6 2009
    Y. Y. Deng
    Abstract Monocyte chemoattractant protein-1 (MCP-1), a member of ,-chemokine subfamily, regulates the migration of microglia, monocytes, and lymphocytes to the inflammatory site in the central nervous system. We sought to determine if amoeboid microglial cells (AMC) produce MCP-1 that may be linked to migration of AMC in the corpus callosum periventricular white matter in hypoxic neonatal rats. A striking feature in 1-day-old rats subjected to hypoxia was a marked increase in cell numbers of AMC and immunoexpression of MCP-1 and its receptor (CCR2). By BrdU immunostaining, there was no significant change in the proliferation rate of AMC after hypoxic exposure when compared with the corresponding control rats. When injected intracerebrally into the corpus callosum of 7-day-old postnatal rats, MCP-1 induced the chemotactic migration of AMC to the injection site. In primary microglial cell culture subjected to hypoxia, there was a significant increase in MCP-1 release involving NF-,B signaling pathway. In in vitro chemotaxis assay, the medium derived from hypoxia-treated microglial cultures attracted more migratory microglial cells than that from the control microglial culture. The present results suggest that following a hypoxic insult, AMC in the neonatal rats increase MCP-1 production via NF-,B signaling pathway. This induces the migration and accumulation of AMC from the neighboring areas to the periventricular white matter (PWM). It is concluded that the preponderance and active migration of AMC, as well as them being the main cellular source of MCP-1, may offer an explanation for the PWM being susceptible to hypoxic damage in neonatal brain. © 2008 Wiley-Liss, Inc. [source]


    Altered immune response to CNS viral infection in mice with a conditional knock-down of macrophage-lineage cells

    GLIA, Issue 2 2006
    Jessica Carmen
    Abstract Neuroadapted Sindbis Virus (NSV) is a neuronotropic virus that causes hindlimb paralysis in susceptible mice and rats. The authors and others have demonstrated that though death of infected motor neurons occurs, bystander death of uninfected neurons also occurs and both contribute to the paralysis that ensues following infection. The authors have previously shown that the treatment of NSV-infected mice with minocycline, an inhibitor that has many functions within the central nervous system (CNS), including inhibiting microglial activation, protects mice from paralysis and death. The authors, therefore, proposed that microglial activation may contribute to bystander death of motor neurons following NSV infection. Here, the authors tested the hypothesis using a conditional knock-out of activated macrophage-lineage cells, including endogenous CNS macrophage cells. Surprisingly, ablation of these cells resulted in more rapid death and similar weakness in the hind limbs of NSV-infected animals compared with that of control animals. Several key chemokines including IL-12 and monocyte chemoattractant protein-1 (MCP-1) did not become elevated in these animals, resulting in decreased infiltration of T lymphocytes into the CNS of the knock-down animals. Either because of the decreased macrophage activation directly or because of the reduced immune cell influx, viral replication persisted longer within the nervous system in knock-down mice than in wild type mice. The authors, therefore, conclude that although macrophage-lineage cells in the CNS may contribute to neurodegeneration in certain situations, they also serve a protective role, such as control of viral replication. © 2006 Wiley-Liss, Inc. [source]


    HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines

    GLIA, Issue 2 2006
    Nazira El-Hage
    Abstract Opiates exacerbate human immunodeficiency virus type 1 (HIV-1) Tat1-72 -induced release of key proinflammatory cytokines by astrocytes, which may accelerate HIV neuropathogenesis in opiate abusers. The release of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), in particular, is potentiated by opiate,HIV Tat interactions in vitro. Although MCP-1 draws monocytes/macrophages to sites of CNS infection, and activated monocytes/microglia release factors that can damage bystander neurons, the role of MCP-1 in neuro-acquired immunodeficiency syndrome (neuroAIDS) progression in opiate abusers, or nonabusers, is uncertain. Using a chemotaxis assay, N9 microglial cell migration was found to be significantly greater in conditioned medium from mouse striatal astrocytes exposed to morphine and/or Tat1-72 than in vehicle-, ,-opioid receptor (MOR) antagonist-, or inactive, mutant Tat,31-61 -treated controls. Conditioned medium from astrocytes treated with morphine and Tat caused the greatest increase in motility. The response was attenuated using conditioned medium immunoneutralized with MCP-1 antibodies, or medium from MCP-1,/, astrocytes. In the presence of morphine (time-release, subcutaneous implant), intrastriatal Tat increased the proportion of neural cells that were astroglia and F4/80+ macrophages at 7 days post-injection. This was not seen after treatment with Tat alone, or with morphine plus inactive Tat,31-61 or naltrexone. Glia displayed increased MOR and MCP-1 immunoreactivity after morphine and/or Tat exposure. The findings indicate that MCP-1 underlies most of the response of microglia, suggesting that one way in which opiates exacerbate neuroAIDS is by increasing astroglial-derived proinflammatory chemokines at focal sites of CNS infection and promoting macrophage entry and local microglial activation. Importantly, increased glial expression of MOR can trigger an opiate-driven amplification/positive feedback of MCP-1 production and inflammation. © 2005 Wiley-Liss, Inc. [source]


    Tumor necrosis factor is required for RANTES-induced astrocyte monocyte chemoattractant protein-1 production

    GLIA, Issue 2 2003
    Yi Luo
    Abstract Astrocytes respond to stimulation with the chemokine RANTES (regulated on activation, normal T cell expressed) by production of a series of cytokines and chemokines, including tumor necrosis factor-, (TNF-,) and monocyte chemoattractant protein-1 (MCP-1). In the present study we demonstrate that RANTES induces TNF, which in turn stimulates subsequent production of MCP-1. TNF-R1 (p55) serves as the principal receptor responsible for MCP-1 synthesis. The results define an astrocyte proinflammatory cascade that amplifies synthesis of proinflammatory mediators. The implications of these findings to inflammatory diseases of the central nervous system are discussed. © 2003 Wiley-Liss, Inc. [source]


    RANTES stimulates inflammatory cascades and receptor modulation in murine astrocytes

    GLIA, Issue 1 2002
    Yi Luo
    Abstract Cultured mouse astrocytes respond to the CC chemokine RANTES by production of chemokine and cytokine transcripts. Stimulation of astrocytes with 1 nM RANTES or 3,10 nM of the structurally related chemokines (eotaxin, macrophage inflammatory protein-1, and -, [MIP-1,, MIP-1,]) induced transcripts for KC, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-, (TNF-,), MIP-1,, MIP-2, and RANTES in a chemokine and cell-specific fashion. Synthesis of chemokine (KC and MCP-1) and cytokine (TNF-,) proteins was also demonstrated. RANTES-mediated chemokine synthesis was specifically inhibited by pertussis toxin, indicating that G-protein-coupled chemokine receptors participated in astrocyte signaling. Astrocytes expressed CCR1 and CCR5 (the redundant RANTES receptors). Astrocytes derived from mice with targeted mutations of either CCR1 or CCR5 respond after RANTES stimulation, suggesting multiple chemokine receptors may separately mediate RANTES responsiveness in astrocytes. Preliminary data suggest activation of the MAP kinase pathway is also critical for RANTES-mediated signaling in astrocytes. Treatment with RANTES specifically modulated astrocyte receptors upregulating intercellular adhesion molecule 1 (ICAM-1) and downregulating CX3CR1 expression. Thus, after chemokine treatment, astrocytes release proinflammatory mediators and reprogram their surface molecules. The combined effects of RANTES may serve to amplify inflammatory responses within the central nervous system. GLIA 39:19,30, 2002. © 2002 Wiley-Liss, Inc. [source]


    Inflammation and drug hepatotoxicity: Aggravation of injury or clean-up mission?,

    HEPATOLOGY, Issue 5 2005
    Hartmut Jaeschke
    BACKGROUND & AIMS Inflammatory mediators released by nonparenchymal inflammatory cells in the liver have been implicated in the progression of acetaminophen (APAP) hepatotoxicity. Among hepatic nonparenchymal inflammatory cells, we examined the role of the abundant natural killer (NK) cells and NK cells with T-cell receptors (NKT cells) in APAP-induced liver injury. METHODS C57BL/6 mice were administered a toxic dose of APAP intraperitoneally to cause liver injury with or without depletion of NK and NKT cells by anti-NK1.1 monoclonal antibody (MAb). Serum alanine transaminase (ALT) levels, liver histology, hepatic leukocyte accumulation, and cytokine/chemokine expression were assessed. RESULTS Compared with APAP-treated control mice, depletion of both NK and NKT cells by anti-NK1.1 significantly protected mice from APAP-induced liver injury, as evidenced by decreased serum ALT level, improved survival of mice, decreased hepatic necrosis, inhibition of messenger RNA (mRNA) expression for interferon-gamma (IFN-gamma), Fas ligand (FasL), and chemokines including KC (Keratinocyte-derived chemokine); MIP-1 alpha (macrophage inflammatory protein-1 alpha); MCP-1 (monocyte chemoattractant protein-1); IP-10 (interferon-inducible protein); Mig (monokine induced by IFN-gamma) and decreased neutrophil accumulation in the liver. Hepatic NK and NKT cells were identified as the major source of IFN-gamma by intracellular cytokine staining. APAP induced much less liver injury in Fas-deficient (lpr) and FasL-deficient (gld) mice compared with that in wild-type mice. CONCLUSIONS NK and NKT cells play a critical role in the progression of APAP-induced liver injury by secreting IFN-gamma, modulating chemokine production and accumulation of neutrophils, and up-regulating FasL expression in the liver, all of which may promote the inflammatory response of liver innate immune system, thus contributing to the severity and progression of liver injury downstream of the metabolism of APAP and depletion of reduced glutathione (GSH) in hepatocytes. [source]


    Nonconcordance between subclinical atherosclerosis and the calculated Framingham risk score in HIV-infected patients: relationships with serum markers of oxidation and inflammation

    HIV MEDICINE, Issue 4 2010
    S Parra
    Objectives HIV-infected patients show an increased cardiovascular disease (CVD) risk resulting, essentially, from metabolic disturbances related to chronic infection and antiretroviral treatments. The aims of this study were: (1) to evaluate the agreement between the CVD risk estimated using the Framingham risk score (FRS) and the observed presence of subclinical atherosclerosis in HIV-infected patients; (2) to investigate the relationships between CVD and plasma biomarkers of oxidation and inflammation. Methods Atherosclerosis was evaluated in 187 HIV-infected patients by measuring the carotid intima-media thickness (CIMT). CVD risk was estimated using the FRS. We also measured the circulating levels of interleukin-6, monocyte chemoattractant protein-1 (MCP-1) and oxidized low-density lipoprotein (LDL), and paraoxonase-1 activity and concentration. Results There was a weak, albeit statistically significant, agreement between FRS and CIMT (,=0.229, P<0.001). A high proportion of patients with an estimated low risk had subclinical atherosclerosis (n=66; 56.4%). In a multivariate analysis, the presence of subclinical atherosclerosis in this subgroup of patients was associated with age [odds ratio (OR) 1.285; 95% confidence interval (CI) 1.084,1.524; P=0.004], body mass index (OR 0.799; 95% CI 0.642,0.994; P=0.044), MCP-1 (OR 1.027; 95% CI 1.004,1.050; P=0.020) and oxidized LDL (OR 1.026; 95% CI 1.001,1.051; P=0.041). Conclusion FRS underestimated the presence of subclinical atherosclerosis in HIV-infected patients. The increased CVD risk was related, in part, to the chronic oxidative stress and inflammatory status associated with this patient population. [source]


    Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation

    IMMUNOLOGICAL REVIEWS, Issue 1 2007
    Joshua A. Boyce
    Summary:, When activated by specific antigen, complement, or other transmembrane stimuli, mast cells (MCs) generate three eicosanoids: prostaglandin (PG)D2, leukotriene (LT)B4, and LTC4, the parent molecule of the cysteinyl leukotrienes (cysLTs). These diverse lipid mediators, which are generated from a single cell membrane-associated precursor, arachidonic acid, can initiate, amplify, or dampen inflammatory responses and influence the magnitude, duration, and nature of subsequent immune responses. PGD2 and cysLTs, which were originally recognized for their bronchoconstricting and vasoactive properties, also serve diverse and pivotal functions in effector cell trafficking, antigen presentation, leukocyte activation, matrix deposition, and fibrosis. LTB4 is a powerful chemoattractant for neutrophils and certain lymphocyte subsets. Thus, MCs can contribute to each of these processes through eicosanoid generation. Additionally, MCs express G-protein-coupled receptors specific for cysLTs, LTB4, and another eicosanoid, PGE2. Each of these receptors can regulate MC functions in vivo by autocrine and paracrine mechanisms. This review focuses on the biologic functions for MC-associated eicosanoids, the regulation of their production, and the mechanisms by which eicosanoids may regulate MC function in host defense and disease. [source]


    Human mid-gestation amniotic fluid contains interleukin-16 bioactivity

    IMMUNOLOGY, Issue 4 2009
    Catherine A. Thornton
    Summary CD4-positive cells are detectable in the human fetal gastrointestinal tract from 11 weeks of gestation. Interleukin-16 (IL-16) is a chemoattractant for CD4+ cells and, via fetal swallowing of amniotic fluid, could mediate the influx of CD4+ cells into the fetal gut. We have shown that IL-16 was detectable in human amniotic fluid at 16,18 weeks of gestation (mid-pregnancy) but was not detectable at term (late pregnancy; > 37 weeks of gestation). Similarly, mid-pregnancy, but not late pregnancy, amniotic fluid contained chemotactic activity for CD4+ T cells, this activity was reduced by 58% in the presence of a neutralizing anti-IL-16 antibody. The levels of IL-16 in fetal plasma at 16,24 weeks of gestation were very high, and decreased significantly by 25,36 weeks but at > 37 weeks remained significantly higher than adult levels. IL-16 transcripts were detectable in whole tissue extracts of fetal gut, skin and placenta but not in amniocytes, and IL-16 immunoreactivity was detectable in cells within the lamina propria of the fetal gut and within the skin, where it was associated with the basement membrane. Neither IL-16 levels nor chemotactic activity for CD4+ T cells in mid-pregnancy amniotic fluid was related to atopic outcomes at 1 year of age. IL-16 might have an important role in the early development of the human immune system and/or in regulating fetal and maternal immunological responsiveness during pregnancy. [source]


    The use of membrane translocating peptides to identify sites of interaction between the C5a receptor and downstream effector proteins

    IMMUNOLOGY, Issue 4 2004
    Graham A. Auger
    Summary The complement fragment C5a is a potent leucocyte chemoattractant and activator, mediating its effects through a G-protein-coupled receptor. Whilst the C-terminal domain of this receptor has been shown to be essential for receptor desensitization and internalization, it is not known which domains couple to the receptor's heterotrimeric G proteins. In this report we have used a membrane translocating sequence (MTS) to examine the effects of the four intracellular domains of the human C5a receptor (C5aR) on the receptor's signalling via G,i family heterotrimeric G proteins in intact RBL-2H3 cells. The results indicate that all of the intracellular domains couple to downstream signalling, with the proximal region of the C terminus being a major binding site and intracellular loop 3 playing a role in G protein activation or receptor desensitization. [source]


    Role of chemokine ligand 2 in the protective response to early murine pulmonary tuberculosis

    IMMUNOLOGY, Issue 4 2003
    Andre Kipnis
    Summary Chemokines play an important role in the development of immunity to tuberculosis. Chemokine ligand 2 (CCL2, JE, monocyte chemoattractant protein-1) is thought to be primarily responsible for recruiting monocytes, dendritic cells, natural killer cells and activated T cells, all of which play critical roles in the effective control of tuberculosis infection in mice. We show here that in mice in which the CCL2 gene was disrupted, low-dose aerosol infection with Mycobacterium tuberculosis resulted in fewer macrophages entering the lungs, but only a minor and transient increase in bacterial load in the lungs; these mice were still able to establish a state of chronic disease. Such animals showed similar numbers of activated T cells as wild-type mice, as determined by their expression of the CD44hi CD62lo phenotype, but a transient reduction in cells secreting interferon-,. These data indicate that the primary deficiency in mice unable to produce CCL2 is a transient failure to focus antigen-specific T lymphocytes into the infected lung, whereas other elements of the acquired host response are compensated for by different ligands interacting with the chemokine receptor CCR2. [source]


    Regulation of epithelial cell cytokine responses by the ,3,1 integrin

    IMMUNOLOGY, Issue 2 2003
    Farah D. Lubin
    Summary Epithelial cells (EC) from various tissues can produce important cytokines and chemokines when stimulated by proinflammatory cytokines. These EC also receive signals from cell surface integrins, like the ,3,1 integrin, which is important in cell migration and wound healing of epithelial monolayers. However, little is known of the effect of integrin signals on cytokine responses by EC. Colonic Caco-2 cells treated with an anti-,3 integrin antibody prior to stimulation with the proinflammatory cytokine interleukin (IL)-1 yielded suppressed levels of mRNA and secreted IL-6, IL-8 and monocyte chemoattractant protein-1 as compared to cells treated with normal mouse immunoglobulin G. Lung A549 cells also showed a similar suppression of cytokine secretion. Likewise, treatment of the Caco-2 cells with the same antibody suppressed tumour necrosis factor-,-stimulated IL-6 secretion. Fab fragments of the anti-,3 integrin antibody did not induce the suppressive effect but did block the suppressive effect of the whole antibody suggesting that the effect of the antibody required cross-linking of the integrins. Finally, culture of the Caco-2 cells on laminin type 5 (the major ligand for this integrin) yielded depressed levels of IL-1-induced IL-6 secretion as compared to cells on laminin type 1. These data are the first indication that the ,3,1 integrin may cause a suppression of cytokine responses by EC which may be important in regulating the capacity of EC to respond during inflammation or wound healing. [source]


    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 5 2010
    Maylis Dagouassat
    Abstract The aim of our study was to investigate whether myofibroblasts and the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 may play a role in hepatocellular carcinoma progression. We observed that hepatic myofibroblast LI90 cells express MCP-1/CCL2 mRNA and secrete this chemokine. Moreover, myofibroblast LI90 cell-conditioned medium (LI90-CM) induces human hepatoma Huh7 cell migration and invasion. These effects are strongly reduced when a MCP-1/CCL2-depleted LI90-CM was used. We showed that MCP-1/CCL2 induces Huh7 cell migration and invasion through its G-protein,coupled receptor CCR2 and, to a lesser extent, through CCR1 only at high MCP-1/CCL2 concentrations. MCP-1/CCL2's chemotactic activities rely on tyrosine phosphorylation of focal adhesion components and depend on matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, we observed that Huh7 cell migration and invasion induced by the chemokine are strongly inhibited by heparin, by ,-D-xyloside treatment of cells and by anti-syndecan-1 and -4 antibodies. Finally, we developed a 3-dimensional coculture model of myofibroblast LI90 and Huh7 cells and demonstrated that MCP-1/CCL2 and its membrane partners, CCR1 and CCR2, may be involved in the formation of mixed hepatoma-myofibroblast spheroids. In conclusion, our data show that human liver myofibroblasts act on hepatoma cells in a paracrine manner to increase their invasiveness and suggest that myofibroblast-derived MCP-1/CCL2 could be involved in the pathogenesis of hepatocellular carcinoma. [source]


    Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2009
    Hiroshi Fujimoto
    Abstract There is growing evidence that tumor-associated macrophages (TAMs) promote tumor growth and dissemination. Many individual reports have focused on the protumor function of molecules linked to the recruitment of macrophages, but little is known about which factor has the strongest impact on recruitment of macrophages in breast cancer. To elucidate this question, we performed RT-PCR using species-specific primers and evaluated tumoral and stromal mRNA expression of macrophage chemoattractants separately in human breast tumor xenografts. The correlation between the tumoral or stromal chemoattractant mRNA expression including monocyte chemoattractant protein-1 (MCP-1) (CCL2), MIP-1, (CCL3), RANTES (CCL5), colony-stimulating factor 1, tumor necrosis factor ,, platelet-derived growth factor (PDGF)-BB and macrophage infiltration were compared. There was significant positive correlation between stromal MCP-1 expression and macrophage number (r = 0.63), and negative correlation between tumoral RANTES expression and macrophage number (r = ,0.75). However, no significant correlation was found for the other tumoral and stromal factors. The interaction between the tumor cells and macrophages was also investigated. Tumor cell,macrophage interactions augmented macrophage-derived MCP-1 mRNA expression and macrophage chemotactic activity in vitro. Treatment of immunodeficient mice bearing human breast cancer cells with a neutralizing antibody to MCP-1 resulted in significant decrease of macrophage infiltration, angiogenetic activity and tumor growth. Furthermore, immunohistochemical analysis of human breast cancer tissue showed stromal MCP-1 had a significant correlation with relapse free survival (p = 0.029), but tumoral MCP-1 did not (p = 0.105). These findings indicate that stromal MCP-1 produced as a result of tumor,stromal interactions may be important for the progression of human breast cancer and macrophages may play an important role in this tumor,stroma interaction. © 2009 UICC. [source]


    The combination of polymorphisms within MCP-1 and IL-1, associated with ulcerative colitis

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 3 2009
    K.-S. Li
    Summary Monocyte chemoattractant protein-1 (MCP-1) is a chemokine involved in monocyte recruitment to sites of inflammation. Raised level of MCP-1 has been widely demonstrated in the intestinal mucosa of patients with ulcerative colitis (UC), suggesting an important role of MCP-1 in the pathogenesis of UC. The ,2518A/G polymorphism in the promoter region of MCP-1 gene affecting its transcriptional activation has been reported recently. In order to assess the potential role of this polymorphism in UC, we examined its distribution in 162 unrelated UC patients and 203 healthy controls. In addition, considering the gene regulatory association between interleukin-1, (IL-1,) and MCP-1, we further examined whether the gene polymorphisms between MCP-1 and IL-1, exert synergetic effects on risk of UC. Our results show that the distribution of MCP-1 genotype or allele frequencies between UC patients and controls was not significantly different; however, the association between the polymorphism of MCP-1 ,2518 GG and the polymorphism of IL-1,,511 T in UC patients is significant (OR 2.062, 95% CI 1.034,4.113, P = 0.038). This is the first report describing the association between MCP-1 polymorphism and UC, and our data suggest that the MCP-1 ,2518 polymorphism itself does not represent an independent genetic risk factor for UC. In contrast, the combination polymorphisms between MCP-1 and IL-1, can increase UC risk significantly, which might help us understand the molecular mechanism underlying the development of UC. [source]


    PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008
    Harshini Sarojini
    Abstract Conditioned medium (secretome) derived from an enriched stem cell culture stimulates chemotaxis of human fibroblasts. These cells are classified as multipotent murine mesenchymal stromal cells (mMSC) by immunochemical analysis of marker proteins. Proteomic analysis of mMSC secretome identifies nineteen secreted proteins, including extracellular matrix structural proteins, collagen processing enzymes, pigment epithelium-derived factor (PEDF) and cystatin C. Immunodepletion and reconstitution experiments show that PEDF is the predominant fibroblast chemoattractant in the conditioned medium, and immunofluorescence microscopy shows strong staining for PEDF in the cytoplasm, at the cell surface, and in intercellular space between mMSCs. This stimulatory effect of PEDF on fibroblast chemotaxis is in contrast to the PEDF-mediated inhibition of endothelial cell migration, reported previously. These differential functional effects of PEDF toward fibroblasts and endothelial cells may serve to program an ordered temporal sequence of scaffold building followed by angiogenesis during wound healing. J. Cell. Biochem. 104: 1793,1802, 2008. © 2008 Wiley-Liss, Inc. [source]