Chemical Route (chemical + route)

Distribution by Scientific Domains


Selected Abstracts


A Chemical Route to BiNbO4 Ceramics

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 2 2009
Oleg A. Shlyakhtin
The liquid phase sintering of fine BiNbO4 powders allows to obtain dense ceramics with excellent microwave dielectric properties (,=44,46; Q×f=16,500,21,600 GHz) at T,700°C. The thermal decomposition of freeze-dried precursors results in the crystallization of a metastable ,,-BiNbO4 polymorph that transforms into a stable orthorhombic ,-modification at T,700°C. The dependence of sinterability on the powder synthesis temperature shows the maximum at 600°C, corresponding to the formation of crystalline BiNbO4 powders with a grain size 80,100 nm. Sintering temperature reduction to 700°C prevents the deterioration of silver contacts during co-firing with BiNbO4 ceramics. In situ scanning electron microscopy observation of the morphological evolution during sintering shows that the intense shrinkage soon after the appearance of a CuO,V2O5 eutectics-based liquid phase is accompanied by complete transformation of the ensemble of primary BiNbO4 particles. [source]


Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2007
Maria Jose Climent
Abstract The one-pot synthesis of the fragrance 4-(p -methoxyphenyl)butan-2-one, with raspberry scent, has been carried out using palladium on different supports such as magnesium oxide (MgO), hydrotalcite, hydroxyapatite (HA), aluminium oxide (,-Al2O3) and titanium dioxide (TiO2). The first pathway consists of a Heck coupling between 4-methoxyiodoanisole and methyl vinyl ketone followed by hydrogenation. Palladium supported on titanium dioxide showed the best performance for carrying out both consecutive steps giving 4-(p -methoxyphenyl)butan-2-one with high yields and selectivity. The Pd-TiO2 catalyst is more active than a homogeneous palladium complex that is well accepted in the literature as being highly active for performing Heck reactions. [source]


ChemInform Abstract: A New Strategy of the Chemical Route to the Cyclopropane Structure: Direct Transformation of Benzylidenemalononitriles and Malononitrile into 1,1,2,2-Tetracyanocyclopropanes.

CHEMINFORM, Issue 22 2008
Michail N. Elinson
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Synthesis of highly-ordered hierarchical ZnO nanostructures and their application in dye-sensitized solar cells

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2010
Y. F. Zhu
Abstract In order to improve the performance of ZnO-based solar cells, highly-ordered hierarchical ZnO nanostructures were design and fabricated. The hierarchical nanostructures were grown on FTO (fluorine doped tin oxide, SnO2:F) glass substrates via a facile, low-temperature, and low-cost chemical route. The morphology and structure of the obtained products has been confirmed by field-emission scanning electron microscopy and X-ray diffraction measurements. The performance investigation of the prepared dye-sensitized solar cells (DSSCs) demonstrates that the hierarchical ZnO nanostructure-based solar cell shows a higher short-circuit current density compared with the ZnO nanowire counterpart. The enhanced current density may be due to the fact that the surface area of the hierarchical nanostructures is increased. These results indicate that hierarchical ZnO nanostructures are more suitable for the application as photoelectrode of DSSCs. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Studies on electrical conduction behavior of La1-3xCaxBaxSrxMnO3 synthesized by chemical route

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2008
K. D. Mandal
Abstract In the manganite La1-xMxMnO3 (M = Ca, Ba, Sr) the doping concentration introduces a mixed valency (Mn3+, Mn4+) which governs the magnetic and electrical properties of the compound. The perovskite oxides La1-3xCaxBaxSrxMnO3 (x = 0.00, 0.05, 0.10) were prepared by chemical method. Single-phase formation is confirmed by XRD studies. The electrical behavior of compositions with x = 0.00, 0.05 and 0.10 in the system La1-3xCaxBaxSrxMnO3 was studied in the temperature range 300-420 K. It is observed that conductivity decreases with increasing temperature as well as dopants concentration. Metallic behavior of these compositions decreases with increasing dopants concentration (x). The microstructures of these samples have been characterized using scanning electron microscopy (SEM). (© 2007 WILEY -VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Synthesis of ethylene/propylene elastomers containing a terminal reactive group: The combination of metallocene catalysis and control chain transfer reaction

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2005
U. Kandil
Abstract This article discusses a chemical route to prepare new ethylene/propylene copolymers (EP) containing a terminal reactive group, such as ,-CH3 and OH. The chemistry involves metallocene-mediated ethylene/propylene copolymerization in the presence of a consecutive chain transfer agent,a mixture of hydrogen and styrene derivatives carrying a CH3 (p -MS) or a silane-protected OH (St-OSi). The major challenge is to find suitable reaction conditions that can simultaneously carry out effective ethylene/propylene copolymerization and incorporation of the styrenic molecule (St-f) at the polymer chain end, in other words, altering the St-f incorporation mode from copolymerization to chain transfer. A systematic study was conducted to examine several metallocene catalyst systems and reaction conditions. Both [(C5Me4)SiMe2N(t -Bu)]TiCl2 and rac-Et(Ind)2ZrCl2, under certain H2 pressures, were found to be suitable catalyst systems to perform the combined task. A broad range of St-f terminated EP copolymers (EP- t -p-MS and EP- t -St-OH), with various compositions and molecular weights, have been prepared with polymer molecular weight inversely proportional to the molar ratio of [St-f]/[monomer]. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1858,1872, 2005 [source]


A Soft Chemistry Route for the Synthesis of Nanostructured Pb2Ru2O6.5 with a Controlled Stoichiometry

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2008
Vincenzo Esposito
A new chemical route to synthesize nanostructured lead ruthenium pyrochlore (Pb2Ru2O6.5) powders was developed. The synthesis was performed starting from a metal nitrate aqueous solution and N, N, N,, N, tetramethylethylendiamine (TMEDA). The amine, which is a mild basic chelating agent, was able to control the simultaneous precipitation of lead and ruthenium oxo/hydroxides. For the sake of comparison, Pb2Ru2O6.5 powders were prepared using the more conventional polymeric precursor method. The new method was effective for the synthesis of nanostructured Pb2Ru2O6.5 powders already stable at 400°C and up to 1000°C. [source]


Highly-efficient Cd-free CuInS2 thin-film solar cells and mini-modules with Zn(S,O) buffer layers prepared by an alternative chemical bath process

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 6 2006
A. Ennaoui
Abstract Recent progress in fabricating Cd- and Se-free wide-gap chalcopyrite thin-film solar devices with Zn(S,O) buffer layers prepared by an alternative chemical bath process (CBD) using thiourea as complexing agent is discussed. Zn(S,O) has a larger band gap (Eg,=,3·6,3·8,eV) than the conventional buffer material CdS (Eg,=,2·4,eV) currently used in chalcopyrite-based thin films solar cells. Thus, Zn(S,O) is a potential alternative buffer material, which already results in Cd-free solar cell devices with increased spectral response in the blue wavelength region if low-gap chalcopyrites are used. Suitable conditions for reproducible deposition of good-quality Zn(S,O) thin films on wide-gap CuInS2 (,CIS') absorbers have been identified for an alternative, low-temperature chemical route. The thickness of the different Zn(S,O) buffers and the coverage of the CIS absorber by those layers as well as their surface composition were controlled by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray excited Auger electron spectroscopy. The minimum thickness required for a complete coverage of the rough CIS absorber by a Zn(S,O) layer deposited by this CBD process was estimated to ,15,nm. The high transparency of this Zn(S,O) buffer layer in the short-wavelength region leads to an increase of ,1,mA/cm2 in the short-circuit current density of corresponding CIS-based solar cells. Active area efficiencies exceeding 11·0% (total area: 10·4%) have been achieved for the first time, with an open circuit voltage of 700·4,mV, a fill factor of 65·8% and a short-circuit current density of 24·5,mA/cm2 (total area: 22·5,mA/cm2). These results are comparable to the performance of CdS buffered reference cells. First integrated series interconnected mini-modules on 5,×,5,cm2 substrates have been prepared and already reach an efficiency (active area: 17·2,cm2) of above 8%. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Cover Picture: Sequential Nucleation and Growth of Complex Nanostructured Films (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2006
Mater.
Abstract A sequential nucleation and growth process has been developed to construct complex nanostructured films step-by-step from aqueous solutions, as reported by Liu, Voigt, and co-workers on p.,335. This method can be applied to a wide range of materials, and can be combined with top,down techniques to create spatially resolved micropatterns. The cover figure shows images of oriented nanowires, nanoneedles, nanotubes, nanoplates and stacked columns, wagon-wheels, hierarchical films based on wagon-wheels, hierarchically ordered mesophase silicate, and micropatterned flower-like structures. Nanostructured films with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy/chemical conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of continuous films, and arrays of oriented nanorods and nanotubes. More recently, aqueous-phase routes have been used to produce films composed of more complex crystal structures. In this paper, we discuss recent progress in the synthesis of complex nanostructures through sequential nucleation and growth processes. We first review the use of multistage, seeded-growth methods to synthesize a wide range of nanostructures, including oriented nanowires, nanotubes, and nanoneedles, as well as laminated films, columns, and multilayer heterostructures. We then describe more recent work on the application of sequential nucleation and growth to the systematic assembly of large arrays of hierarchical, complex, oriented, and ordered crystal architectures. The multistage aqueous chemical route is shown to be applicable to several technologically important materials, and therefore may play a key role in advancing complex nanomaterials into applications. [source]


Phosphodiesterase 5 (PDE 5) inhibitors for the treatment of male erectile disorder: Attaining selectivity versus PDE6

MEDICINAL RESEARCH REVIEWS, Issue 3 2006
Dmitri Pissarnitski
Abstract The role of phosphodiesterase type 5 (PDE5) in the mechanism of male erection has been well understood, and several drugs inhibiting this enzyme are being used for the treatment of erectile dysfunction (ED). Discovery of inhibitors with improved selectivity versus other PDE isozymes could lead to drugs with improved safety profile. Achievement of selectivity versus PDE6, co-inhibition of which results in disturbances of color perception, remains the most challenging aspect of current drug discovery programs. The present review describes several case studies, where significant (>100 fold) selectivity versus PDE6 has been attained via investigation of structure,activity relationships (SAR). Special attention is given to the chemical routes leading to novel chemotypes and allowing efficient exploration of their SAR's. Strategies for attaining inhibitor selectivity discussed below may be applicable for other drug discovery programs. © 2005 Wiley Periodicals, Inc. Med Res Rev [source]


Synthesis of nickel,zinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 3 2006
Z. Beji
Abstract Nickel,zinc ferrite monodisperse nanoparticles are synthesized by forced hydrolysis in diethylenglycol. FC and ZFC susceptibility curves suggest that they present superparmagnetic behaviour with a blocking temperature between 63 and 15 K depending on the zinc content. The saturation magnetization of the nanocrystals at 5 K is very close to that of bulk materials, and very high compared to that of similar particles prepared by other chemical routes. High Resolution Transmission Electron Microscopy and In-field Mössbauer studies show clearly that these relatively high values are mainly due to: (i) the high crystalline quality of the particles and (ii) a cation distribution different from the classical distribution encountered in the bulk material. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]