Home About us Contact | |||
Chemical Oxidation (chemical + oxidation)
Selected AbstractsSoil Vapor Extraction and Chemical Oxidation to Remediate Chlorinated Solvents in Fractured Crystalline Bedrock: Pilot Study Results and Lessons LearnedREMEDIATION, Issue 2 2002H. Jean Cho A pilot study was completed at a fractured crystalline bedrock site using a combination of soil vapor extraction (SVE) and in-situ chemical oxidation (ISCO) with Fenton's Reagent. This system was designed to destroy 1,1,1-trichloroethane (TCA) and its daughter products, 1,1-dichloroethene (DCE) and 1,1-dichloroethane (DCA). Approximately 150 pounds of volatile organic compounds (VOCs) were oxidized in-situ or removed from the aquifer as vapor during the pilot study. Largely as a result of chemical oxidation, TCA concentrations in groundwater located within a local groundwater mound decreased by 69 to 95 percent. No significant rebound in VOC concentration was observed in these wells. Wells located outside of the groundwater mound showed less dramatic decreases in VOC concentration, and the data show that vapor stripping and short-term groundwater migration following the oxidant injection were the key processes at these wells. Although the porosity of the aquifer at the site is on the order of 2 percent or less, the pilot study showed that SVE could be an effective remedial process in fractured crystalline rock. © 2002 Wiley Periodicals, Inc. [source] Ferrocenyl Quinone Methides as Strong Antiproliferative Agents: Formation by Metabolic and Chemical Oxidation of Ferrocenyl Phenols,ANGEWANDTE CHEMIE, Issue 48 2009Didier Hamels Schwer verdaulich für Krebszellen: Potenziell zytotoxische Ferrocenylchinonmethide entstehen durch metabolische oder chemische Oxidation von Ferrocenylphenolen. Die Spezies wirken stark proliferationshemmend. [source] Phenol Removal through Chemical Oxidation using Fenton ReagentCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 5 2007Y. Yavuz Abstract In this study, phenol, aromatic, and non-biodegradable organic matter were investigated and found to be removed from the model solution through chemical oxidation using Fenton reagent. The effects of the initial phenol concentration, hydrogen peroxide, and ferrous sulfate concentrations on the removal efficiency were investigated. Performance of the chemical oxidation process was monitored with phenol and COD (Chemical Oxygen Demand) analyses. In the experimental studies, phenol removal of over 98,% and COD removal of nearly 70,% were achieved. The optimum conditions for Fenton reaction both for initial phenol concentrations of 200 and 500,mg/L were found at a ratio [Fe2+]/[H2O2] (mol/mol) equal to 0.11. According to the results, chemical oxidation using Fenton reagent was found to be too effective, especially for phenol removal. However, this method has limited removal efficiency for COD. [source] Benzoylbiliverdins from Chemical Oxidation of Dodeca-Substituted Porphyrins.CHEMINFORM, Issue 1 2004Owendi Ongayi No abstract is available for this article. [source] Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active siteACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2005Pascal Retailleau Urate oxidase from Aspergillus flavus (uricase or Uox; EC 1.7.3.3) is a 135,kDa homotetramer with a subunit consisting of 301 amino acids. It catalyses the first step of the degradation of uric acid into allantoin. The structure of the extracted enzyme complexed with a purine-type inhibitor (8-azaxanthin) had been solved from high-resolution X-ray diffraction of I222 crystals. Expression of the recombinant enzyme in Saccharomyces cerevisiae followed by a new purification procedure allowed the crystallization of both unliganded and liganded enzymes utilizing the same conditions but in various crystal forms. Here, four different crystal forms of Uox are analyzed. The diversity of the Uox crystal forms appears to depend strongly on the chemicals used as inhibitors. In the presence of uracil and 5,6-diaminouracil crystals usually belong to the trigonal space group P3121, the asymmetric unit (AU) of which contains one tetramer of Uox (four subunits). Chemical oxidation of 5,6-diaminouracil within the protein may occur, leading to the canonical (I222) packing with one subunit per AU. Coexistence of two crystal forms, P21 with two tetramers per AU and I222, was found in the same crystallization drop containing another inhibitor, guanine. Finally, a fourth form, P21212 with one tetramer per AU, resulted fortuitously in the presence of cymelarsan, an additive. Of all the reported forms, the I222 crystal forms present by far the best X-ray diffraction resolution (,1.6,Å resolution compared with 2.3,3.2,Å for the other forms). The various structures and contacts in all crystalline lattices are compared. The backbones are essentially conserved except for the region near the active site. Its location at the dimer interface is thus likely to be at the origin of the crystal contact changes as a response to the various bound inhibitors. [source] Suitability of Stripping Chronopotentiometry for Heavy Metal Speciation Using Hydrogen Peroxide as Oxidant: Application to the Cd(II)-EDTA-PMA SystemELECTROANALYSIS, Issue 24 2005Núria Serrano Abstract The possibilities of stripping chronopotentiometry (SCP) for heavy metal speciation have been tested in the modality of chemical oxidation using the model systems Cd(II)-polyacrylic acid (PMA), Cd(II)-EDTA and Cd(II)-PMA-EDTA. The use of 0.03% H2O2 as a chemical oxidant provides reliable results from transition times, but peak potentials are dramatically affected by the presence of this reagent. The study suggests that chemical-oxidation SCP can be a technique complementary to other stripping modalities in the study of inert and macromolecular labile metal complexes. [source] Electroconductive Hydrogels: Electrical and Electrochemical Properties of Polypyrrole-Poly(HEMA) CompositesELECTROANALYSIS, Issue 7 2005Sean Brahim Abstract Composites of inherently conductive polypyrrole (PPy) within highly hydrophilic poly(2-hydroxyethyl methacrylate)-based hydrogels (p(HEMA)) have been fabricated and their electrochemical properties investigated. The electrochemical characteristics observed by cyclic voltammetry suggest less facile reduction of PPy within the composite hydrogel compared to electropolymerized PPy, as shown by the shift in the reduction peak potential from ,472,mV for electropolymerized polypyrrole to ,636,mV for the electroconductive composite gel. The network impedance magnitude for the electroconductive hydrogel remains quite low, ca. 100,,, even upon approach to DC, over all frequencies and at all offset potentials suggesting retained electronic (bipolaronic) conductivity within the composite. In contrast, sustained application of +0.7 V (vs. Ag/AgCl, 3,M Cl,) for typically 100,min. (conditioning) to reduce the background amperometric current to <1.0,,A, resulted in complete loss of electroactivity. Nyquist plots suggest that sustained application of such a modest potential to the composite hydrogel results in impedance characteristics that resembles p(HEMA) without evidence of the conducting polymer component. PPy composite gels supported a larger ferrocene monocarboxylate diffusivity (Dappt=7.97×10,5,cm2,s,1) compared to electropolymerized PPy (Dappt=5.56×10,5,cm2,s,1), however a marked reduction in diffusivity (Dappt=1.01×10,5,cm2,s,1) was observed with the conditioned hydrogel composite. Cyclic voltammograms in buffer containing H2O2 showed an absence of redox peaks for electrodes coated with PPy-containing membranes, suggesting possible chemical oxidation of polypyrrole by the oxidant [source] Earthworm toxicity during chemical oxidation of diesel-contaminated sandENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2005Kyung-Hee Shin Abstract An ecotoxicity test with Eisenia fetida was performed to monitor the removal of diesel and toxicity variation during the ozonation process. The three-dimensional (3-D) cell test was introduced for the monitoring of the ozonation process, and the removal rate based on total petroleum hydrocarbons (TPHs) mass was about 95% near the ozone inlet ports. This high removal rate might be caused by the low soil organic matter (SOM) content and low water content of sand. The use of a fiber-optic transflection dip probe (FOTDP) demonstrated that more than half of the injected ozone was consumed by reactions with diesel or natural ozone-consuming materials. The earthworm toxicity test using Eisenia fetida demonstrated that diesel concentrations in soil exceeding 10,000 mg/kg caused a dose-dependent weight loss in earthworms and increased mortality. Toxic effects were reduced greatly or eliminated after ozonation, and the degradation products of the ozonation were not toxic to the earthworms at the concentrations tested. One specific result was that the sublethal test on the earthworm might be more sensitive for the evaluation of the quality of contaminated soil, for some samples, which did not result in mortality and produced an adverse effect on weight. [source] Oxidation chemistry of acid-volatile sulfide during analysisENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2002Adrian M. Gonzalez Abstract The susceptibility of some components of sediment acid-volatile sulfide (AVS) to chemical oxidation is a critical factor impacting accurate measurement of AVS in sediment samples. This well-documented susceptibility to oxidation led to the requirement for oxygen-free conditions in the analytical method developed for AVS. In light of this acute potential to oxidize, the serendipitous finding that air can be used in the analysis of sediment AVS is counterintuitive and unexpected. To demonstrate and investigate this interesting observation, extraction experiments were performed using aqueous and solid-phase sulfide species. Experiments using air as the carrier gas showed a mean percentage recovery of sulfide matching that of traditional (nitrogen gas) analysis (i.e., >91%) and a time to completion of less than 30 min for aqueous sulfide and less than 60 min for sediment samples. These results are consistent with those of sulfide oxidation studies reported in the literature. Using air as the analytical carrier gas can provide an interesting alternative for developing an analytical method to determine AVS parameters in the field. [source] Influence of Treatment Conditions on the Chemical Oxidative Activity of H2SO4/H2O2 Mixtures for Modulating the Topography of Titanium,ADVANCED ENGINEERING MATERIALS, Issue 12 2009Fabio Variola Abstract Host-tissue integration of medical implants is governed by their surface properties. The capacity to rationally design the surface physico-chemical cues of implantable materials is thus a fundamental prerequisite to confer enhanced biocompatibility. Our previous work demonstrated that different cellular processes are elicited by the nanotexture generated on titanium (cpTi) and Ti6Al4V alloy by chemical oxidation with a H2SO4/H2O2 mixture. Here, we illustrate that by varying the etching parameters such as temperature, concentration, and treatment time, we can create a variety of surface features on titanium which are expected to impact its biological response. The modified submicron and nanotextured surfaces were characterized by scanning electron (SEM) and atomic force (AFM) microscopies. Contact angle measurements revealed the higher hydrophilicity of the modified surfaces compared to untreated samples and Fourier transform infrared spectroscopy (FT-IR) established that the etching generated a TiO2 layer with a thickness in the 40,60,nm range. [source] Determination of refractory organic matter in marine sediments by chemical oxidation, analytical pyrolysis and solid-state 13C nuclear magnetic resonance spectroscopyEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2008J. M. De La Rosa Summary Seeking to quantify the amount of refractory organic matter (ROM), which includes black carbon-like material (BC), in marine sediments, we have applied a two-step procedure that consists of a chemical oxidation with sodium chlorite of the demineralized sediments followed by integration of the aromatic C region in the remaining residues by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The efficacy for lignin removal was tested by analytical pyrolysis in the presence of tetramethyl ammonium hydroxide (TMAH). Riverine, estuarine and offshore marine sediment samples were collected from the southwest Atlantic coast of Spain, a site of geological and environmental interest. Measured contents of BC-like material ranged between 3.0 and 45.7% of the total organic carbon. Greater relative BC contents were found in riverine sediments close to urban areas, which show an elevated input of anthropogenic organic material. The contents of BC-like material in offshore marine sediments (5.5,6.1%) were similar to those previously reported for these kinds of samples. However, NMR and pyrolysis-GC/MS of the isolated ROM reveals that abundant refractory aliphatic organic material remains in most of the marine samples after chlorite oxidation. We suggest that this pool of aliphatic carbon may play an important role as a stable carbon pool within the global C cycle. [source] Optimization of Full-Scale Permanganate ISCO System Operation: Laboratory and Numerical StudiesGROUND WATER MONITORING & REMEDIATION, Issue 4 2008Jeffrey L. Heiderscheidt Laboratory characterization studies, one-dimensional flow-through studies, and numerical model simulations were conducted to examine site conditions and system features that may have adversely affected in situ chemical oxidation (ISCO) performance at the Naval Training Center's (NTC) Operable Unit 4 located in Orlando, Florida, and to identify potential ISCO system modifications to achieve the desired remediation performance. At the NTC site, ISCO was implemented using vertical injection wells to deliver potassium permanganate into a ground water zone for treatment of tetrachloroethylene and its breakdown products. However, oxidant distribution was much more limited than anticipated. Characterization studies revealed that the ground water zone being treated by ISCO was very fine sand with a small effective particle size and low uniformity coefficient, along with a high organic carbon content, high natural oxidant demand (NOD), and a high ground water dissolved solids concentration, all of which contributed to full-scale ISCO application difficulties. These site conditions contributed to injection well permeability loss and an inability to achieve the design oxidant injection flow rate, limiting the actual oxidant distribution at the site. Flow-through experiments demonstrated that more favorable oxidant delivery and distribution conditions are enabled by applying a lower oxidant concentration at a faster delivery rate for a greater number of pore volumes. Numerical simulations, run for a variety of conditions (injection/extraction well flow rates, injected oxidant concentration, amount of NOD present, and NOD oxidation rate), also revealed that low,oxidant concentration injection at a high flow rate is a more effective method to deliver the required mass of oxidant to the target treatment zone. [source] Permanganate Treatment of an Emplaced DNAPL SourceGROUND WATER MONITORING & REMEDIATION, Issue 4 2007Neil R. Thomson In situ chemical oxidation (ISCO) using permanganate is one of the few promising technologies that have recently appeared with the capability of aggressively removing mass from nonaqueous phase liquid (NAPL) source zones. While NAPL mass in regions of the treatment zone where delivery is dominated by advection can be removed rather quickly, the rate of mass removal from stagnant zones is diffusion controlled. This gives rise to partial mass removal and a concomitant reduction in the NAPL mass, downgradient ground water concentrations, and the dissolution rate associated with the source zone. Therefore, monitoring the performance of a permanganate ISCO treatment system is important to maintain the desired efficiency and to establish a treatment end point. In this paper, we illustrate the use of various monitoring approaches to assess the performance of a pilot-scale investigation that involved treatment of a multicomponent NAPL residual source zone with permanganate using a ground water recirculation system for 485 d. Ongoing treatment performance was assessed using permanganate and chloride concentration data obtained from extraction wells, 98 piezometers located approximately 1 m downgradient from the source, and ground water profiling. At the completion of treatment, 23 intact soil cores were extracted from the source zone and used to determine the remaining NAPL mass and manganese deposition. Based on the data collected, more than 99% of the initial NAPL mass was removed during treatment; however, remnant NAPL was sufficient to generate a small but measurable dissolved phase trichloroethene (TCE) and perchloroethene (PCE) plume. As a result of treatment, the ambient-gradient discharge rates were reduced by 99% for TCE and 89% for PCE relative to baseline conditions. The lack of complete source zone oxidation was presumed to be the result of dissolution fingers, which channeled the permanganate solution through the source zone preventing direct contact with the NAPL and giving rise to diffusion-limited mass removal. [source] A New Regeneration System for Oxidized Nicotinamide CofactorsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2009Seda Aksu Abstract A novel regeneration system for oxidized nicotinamide cofactors (NAD+ and NADP+) is presented. By combining 2,2,-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS)-catalyzed oxidation of NAD(P)H with laccase-catalyzed utilization of molecular oxygen as terminal oxidant, a simple chemo-enzymatic NAD(P)+ regeneration method is achieved. Thus, the advantages of both worlds, chemical oxidation of reduced nicotinamide cofactors and laccase-catalyzed utilization of oxygen from air are combined in a simple and generally applicable new approach for biooxidation catalysis. This new application of the well-known laccase-mediator system (LMS) is successfully used to promote alcohol dehydrogenase-catalyzed oxidation reactions of primary and secondary alcohols. Already under non-optimized conditions, high turnover numbers of >300 and >16000 were obtained for the nicotinamide cofactor and ABTS, respectively. In this communication, we present the proof-of-principle and initial characterization of the proposed new regeneration system. [source] Oxidative processes of desulfurization of liquid fuelsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2010J.M. Campos-Martin Abstract Environmental concerns have introduced a need to remove sulfur-containing compounds from light oil. As oxidative desulfurization is conducted under very mild reaction conditions, much attention has recently been devoted to this process. In this contribution, the developments in selective removal of organosulfur compounds present in liquid fuels via oxidative desulfurization, including both chemical oxidation and biodesulfurization, are reviewed. At the end of each section, a brief account of the research directions needed in this field is also included. Copyright © 2010 Society of Chemical Industry [source] Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatmentJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2004Dionissios Mantzavinos Abstract Chemical oxidation technologies are often employed for the treatment of complex industrial effluents that are not amenable to conventional biological methods. The role of chemical oxidation depends on the treatment objectives and may vary from partial remediation to complete mineralization. In the case of partial treatment, chemical oxidation aims at the selective removal of the more bioresistant fractions and their conversion to readily biodegradable intermediates that can subsequently be treated biologically. Coupling chemical pre-oxidation with biological post-treatment is conceptually beneficial as it can lead to increased overall treatment efficiencies compared with the efficiency of each individual stage. This paper reviews recent developments and highlights some important aspects that need to be addressed when considering such integrated schemes. Copyright © 2004 Society of Chemical Industry [source] Conductive Polymer Coating on Nonconductive Ceramic Substrates for Use in the Electrophoretic Deposition ProcessJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2008Tetsuo Uchikoshi Uniform coating and line patterning of a conductive polypyrrole (Ppy) film on nonconductive ceramic materials were performed for use as substrates in the electrophoretic deposition (EPD) process. The Ppy was synthesized by chemical oxidation in the pyrrole solution. Direct shaping or line patterning of alumina or zirconia particles by EPD was carried out using the Ppy films as cathodes. [source] Optical characterization of GaN microcavity fabricated by wet etchingPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2006C.-Y. Lu Abstract We report a novel technique to fabricate gallium nitride (GaN) microcavities by combining the methods of photo-enhanced wet chemical oxidation and crystallographic etching. Such GaN microcavities exhibit mirror-like vertical facets composing of {1100}GaN and various gemoetry of hexagonal, trigonal and cylindrical shapes. The emission spectra of the GaN micro-cavities are found in resonance with the whispering gallery (WG) modes when pumped with a 266 nm Nd:YAG laser. The signatures of GaN microcavities were further characterized by an increase of the WG mode spacing with the reduced device size and suppression of the side mode emission intensity with pump intensity. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] PANI,LDPE composites: Effect of blending conditionsPOLYMER COMPOSITES, Issue 1 2009M. Cote A composite based on polyaniline (PANI) and low density polyethylene (LDPE) with electrical conductivity was developed. Polyaniline was polymerized by chemical oxidation and doped with dodecyl-benzene-sulfonic acid (DBSA). PANI,LDPE composites were prepared via melt blending and the films were obtained by compression molding. The influence of three variables of the blending (temperature, [PANI], rotor speed) on conductivity, microstructure and mechanical properties of the composites was studied by means of statistical tools and a 23 experimental design. The results show that the PANI concentration is the most influential variable, which mainly affects the conductivity and the elongation at break of the composites. These changes are related to the microstructure of the composites. Statistically, the other variables don't show significant influence on conductivity and mechanical properties in the studied range. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers. [source] Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: A reviewREMEDIATION, Issue 3 2010Pamela J. Dugan Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous-phase liquid (DNAPL) compounds during surfactant-enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost-effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL-contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source-zone treatment. This article provides a critical review of peer-reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc. [source] In situ chemical oxidation of residual LNAPL and dissolved-phase fuel hydrocarbons and chlorinated alkenes in groundwater using activated persulfate,REMEDIATION, Issue 2 2009Joan Siegal A treatablity study (TS) was conducted to evaluate the efficacy of in situ chemical oxidation (ISCO) using activated persulfate, alone and in combination with air sparging (AS), for treating a source area contaminated with residual light nonaqueous-phase liquid (LNAPL), dissolved-phase fuel hydrocarbons (HCs), and dissolved-phase chlorinated alkenes at Edwards Air Force Base (AFB), California. The TS was implemented in two phases. Phase I included injecting a solution of sodium persulfate and sodium hydroxide (NaOH) into groundwater via an existing well where residual LNAPL and dissolved-phase contaminants were present. Because the results of Phase I indicated a limited distribution of the activated persulfate, Phase II was performed to assess whether AS could enhance the distribution of the sodium persulfate. Each phase was followed by groundwater monitoring and sampling at the injection well and at three monitoring wells, located 20 to 44 feet from the injection well. Results from Phases I and II of the TS indicated that (1) alkaline-activated persulfate was effective in promoting the dissolution of LNAPL and the degradation of dissolved-phase contaminants, but only at the injection well; (2) the addition of AS was effective in enhancing the radius of persulfate distribution from less than 20 feet to greater than 44 feet, and (3) persulfate alone (i.e., not in an activated state) was effective in reducing the concentrations of dissolved-phase fuel HC and chlorinated alkenes. © 2009 Wiley Periodicals, Inc. [source] Successful unsaturated zone treatment of PCE with sodium permanganateREMEDIATION, Issue 2 2009John R. Hesemann In situ chemical oxidation (ISCO) with permanganate has been widely used for soil and groundwater treatment in the saturated zone. Due to the challenges associated with achieving effective distribution and retention in the unsaturated zone, there is a great interest in developing alternative injection technologies that increase the success of vadose-zone treatment. The subject site is an active dry cleaner located in Topeka, Kansas. A relatively small area of residual contamination adjacent to the active facility building has been identified as the source of a large sitewide groundwater contamination plume with off-site receptors. The Kansas Department of Health and Environment (KDHE) currently manages site remedial efforts and chose to pilot-test ISCO with permanganate for the reduction of perchloroethene (PCE) soil concentrations within the source area. KDHE subsequently contracted Burns & McDonnell to design and implement an ISCO pilot test. A treatability study was performed by Carus Corporation to determine permanganate-soil-oxidant-demand (PSOD) and the required oxidant dosing for the site. The pilot-test design included an ISCO injection approach that consisted of injecting aqueous sodium permanganate using direct-push technology with a sealed borehole. During the pilot test, approximately 12,500 pounds of sodium permanganate were injected at a concentration of approximately 3 percent (by weight) using the methods described above. Confirmation soil sampling conducted after the injection event indicated PCE reductions ranging from approximately 79 to more than 99 percent. A follow-up treatment, consisting of the injection of an additional 6,200 pounds of sodium permanganate, was implemented to address residual soil impacts remaining in the soil source zone. Confirmation soil sampling conducted after the treatment indicated a PCE reduction of greater than 90 percent at the most heavily impacted sample location and additional reductions in four of the six samples collected. © 2009 Wiley Periodicals, Inc. [source] The effects of in situ chemical oxidation on microbiological processes: A reviewREMEDIATION, Issue 3 2006Jason Sahl The effects of in situ chemical oxidation (ISCO) on biological processes, as reported in the literature, were researched to determine if coupling ISCO with in situ bioremediation could be achieved in field and laboratory experiments. Literature was compiled concerning the effect of ISCO on microbial communities following addition of a chemical oxidant at a range of concentrations designed to treat a variety of subsurface contaminants. The results indicate that although microbial communities may potentially be adversely affected by chemical oxidation in the short term, a rebound of microbial biomass and/or bioremediation activity can be expected. Successfully coupling ISCO with bioremediation in field applications may be a cost-effective method of achieving risk-based site remediation goals. © 2006 Wiley Periodicals, Inc. [source] Remedial options for chlorinated volatile organics in a partially anaerobic aquiferREMEDIATION, Issue 4 2004Xiujin Qiu A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) with half-lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1-TCA, and the derivative cis-dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C-TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2-dichloropropane (1,2-DCP) and 1,1-dichlorethane (1,1-DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half-lives for 1,2-DCP and 1,1-DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate-modified Fenton's reagent was effective in degrading aqueous-phase PCE, TCE, 1,1,1-TCA, 1,2-DCP, etc.; however, this approach had minimal effects on solid-phase contaminants. The observed oxidant demand was 16 g-H2O2/L-groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero-valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1-TCA only to 1,1-DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2-DCP, 1,1-DCA, and CA. The longevity test showed that one gram of 325-mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10,2 Lm,2h,1, 2 × 10,3 Lm,2h,1, and 1.2 × 10,3 Lm,2h,1 for 1,1,1-TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc. [source] In situ remediation of MTBE utilizing ozoneREMEDIATION, Issue 1 2002Jeffrey C. Dey There has been a great deal of focus on methyl tertiary butyl ether (MTBE) over the past few years by local, state, and federal government, industry, public stakeholders, the environmental services market, and educational institutions. This focus is, in large part, the result of the widespread detection of MTBE in groundwater and surface waters across the United States. The presence of MTBE in groundwater has been attributed primarily to the release from underground storage tank (UST) systems at gasoline service stations. MTBE's physical and chemical properties are different than other constituents of gasoline that have traditionally been cause for concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)]. This difference in properties is why MTBE migrates differently in the subsurface environment and exhibits different constraints relative to mitigation and remediation of MTBE once it has been released to subsurface soils and groundwater. Resource Control Corporation (RCC) has accomplished the remediation of MTBE from subsurface soil and groundwater at multiple sites using ozone. RCC has successfully applied ozone at several sites with different lithologies, geochemistry, and concentrations of constituents of concern. This article presents results from several projects utilizing in situ chemical oxidation with ozone. On these projects MTBE concentrations in groundwater were reduced to remedial objectives usually sooner than anticipated. © 2002 Wiley Periodicals, Inc. [source] Soil Vapor Extraction and Chemical Oxidation to Remediate Chlorinated Solvents in Fractured Crystalline Bedrock: Pilot Study Results and Lessons LearnedREMEDIATION, Issue 2 2002H. Jean Cho A pilot study was completed at a fractured crystalline bedrock site using a combination of soil vapor extraction (SVE) and in-situ chemical oxidation (ISCO) with Fenton's Reagent. This system was designed to destroy 1,1,1-trichloroethane (TCA) and its daughter products, 1,1-dichloroethene (DCE) and 1,1-dichloroethane (DCA). Approximately 150 pounds of volatile organic compounds (VOCs) were oxidized in-situ or removed from the aquifer as vapor during the pilot study. Largely as a result of chemical oxidation, TCA concentrations in groundwater located within a local groundwater mound decreased by 69 to 95 percent. No significant rebound in VOC concentration was observed in these wells. Wells located outside of the groundwater mound showed less dramatic decreases in VOC concentration, and the data show that vapor stripping and short-term groundwater migration following the oxidant injection were the key processes at these wells. Although the porosity of the aquifer at the site is on the order of 2 percent or less, the pilot study showed that SVE could be an effective remedial process in fractured crystalline rock. © 2002 Wiley Periodicals, Inc. [source] Pilot Scale Demonstration of the Electrochemical Peroxidation Process at a Petroleum Spill SiteREMEDIATION, Issue 1 2000William P. Healy In a pilot test experiment involving approximately 200,000 gallons of groundwater, Electrochemical Peroxidation (ECP) was used to degrade aqueous phase volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and methyl tertbutyl ether (MTBE) from a petroleum spill. ECP involves a form of the Fenton's Reagent reaction, which uses electrochemically generated iron and dilute hydrogen peroxide (<30 mg/L) to break down organic molecules through oxidation to carbon dioxide and water. This article discusses a pilot scale demonstration of the ECP technology and its application to aqueous phase organic contaminants. The remedial approach used at the pilot test site involves three phases: (1) ex-situ chemical oxidation, (2) in-situ oxidation by reinjection of treated effluent near the plume origin, and (3) reestablishment of aerobic biodegradation as the residual hydrogen peroxide discharged to a series of upgradient wells degrades to oxygen. Analytical results of the pilot demonstration indicate that the ex-situ chemical oxidation reduced total BTEX concentrations in groundwater from over 1,000 ppb to undetectable concentrations (<1 ppb). © 2000 John Wiley & Sons, Inc. [source] Ultrasound-facilitated electro-oxidation for treating cyan ink effluentTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2008Chee-Yong Chua Abstract The feasibility of using ultrasonication in combination with the Fenton's reaction was investigated for treating cyan ink effluent. A two-step treatment process was developed,the first step was an ultrasound-assisted electro-oxidation, while the second was chemical oxidation through the addition of hydrogen peroxide. The use of electro-oxidation in the first step significantly reduced the amount of iron needed compared with the conventional Fenton's reaction, resulting in a 98% reduction in the amount of sludge produced. A simple technique based on refractive index measurements was introduced as a rapid way to quantify the amount of sludge produced. It was postulated that ultrasonication in the presence of iron (from electrolysis) in the first step converted the ink components into reaction intermediates which were more amenable to peroxide oxidation in the second step. These intermediates were quantified by ultra-violet absorption at wavelengths of 275,400 nm. The two-step treatment process was able to reduce the COD and copper contents in the ink waste water to within the discharge limit, which conventional Fenton's reaction was unable to meet for copper discharge. The same COD removal was also achieved in about half the time. Kinetics study performed to further understand the reaction mechanisms show second-order kinetics for both steps with activation energies of 18.2 and 20.4 kJ/mol for steps 1 and 2, respectively. On a étudié la possibilité de recourir à l'ultrasonification combinée à la réaction de Fenton pour traiter l'effluent d'encre de cyan. Un procédé de traitement en deux étapes a été mis au point: la première étape consiste en une électro-oxydation assistée par ultrasons, tandis que la seconde consiste en une oxydation chimique par ajout de peroxyde d'hydrogène. Le recours à l'électro-oxydation dans la première étape réduit significativement la quantité de fer requis comparé à la réaction de Fenton classique, entraînant une réduction de 98% de la quantité de suspension produite. Une technique simple basée sur des mesures d'indice de réfraction a été introduite comme une façon rapide d'établir la quantité de suspension produite. On a posé comme postulat que l'ultrasonification en présence de fer (de l'électrolyse) dans la première étape convertit les composantes de l'encre en des intermédiaires de réaction qui étaient plus propices à l'oxydation du peroxyde dans la seconde étape. Ces intermédiaires ont été quantifiés par l'absorption des ultraviolets à des longueurs d'ondes de 275 nm à 400 nm. Ce procédé de traitement en deux étapes a permis de réduire la DCO et les teneurs en cuivre dans l'eau usée de l'encre pour les amener à la limite des normes de rejet, ce que la réaction de Fenton classique n'a pu permettre de réaliser pour le cuivre. Le même retrait de DCO a été également réalisé dans un temps inférieur de 50%. L'étude de cinétique effectuée pour mieux comprendre les mécanismes de réaction montre une cinétique de second ordre pour les deux étapes avec des énergies de désactivation de 18,2 et 20,4 kJ/mol pour les étapes 1 et 2, respectivement. [source] Engineering of the ,-amylase from Geobacillus stearothermophilus US100 for detergent incorporationBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009Bassem Khemakhem Abstract AmyUS100,IG is a variant of the most thermoactive and thermostable maltohexaose forming ,-amylase produced by Geobacillus stearothermophilus sp.US100. This enzyme which was designed to improve the thermostability of the wild-type enzyme has acquired a very high resistance to chelator agents. According to modeling structural studies and with the aim of enhancing its resistance towards chemical oxidation, a mutant (AmyUS100,IG/M197A) was created by substituting methionine 197 to alanine. The catalytic proprieties of the resulting mutant show alterations in the specific activity and the profile of starch hydrolysis. Interestingly, AmyUS100,IG/M197A displayed the highest resistance to oxidation compared to the AmyUS100,IG and to Termamyl300®, the well-known commercial amylase used in detergent. Further, performance of the engineered ,-amylase was estimated in the presence of commonly used detergent compounds and a wide range of commercial detergent (liquid and solid). These studies indicated a high compatibility and performance of AmyUS100,IG/M197A, suggesting its potential application in detergent industry. Biotechnol. Bioeng. 2009;102: 380,389. © 2008 Wiley Periodicals, Inc. [source] Phenol Removal through Chemical Oxidation using Fenton ReagentCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 5 2007Y. Yavuz Abstract In this study, phenol, aromatic, and non-biodegradable organic matter were investigated and found to be removed from the model solution through chemical oxidation using Fenton reagent. The effects of the initial phenol concentration, hydrogen peroxide, and ferrous sulfate concentrations on the removal efficiency were investigated. Performance of the chemical oxidation process was monitored with phenol and COD (Chemical Oxygen Demand) analyses. In the experimental studies, phenol removal of over 98,% and COD removal of nearly 70,% were achieved. The optimum conditions for Fenton reaction both for initial phenol concentrations of 200 and 500,mg/L were found at a ratio [Fe2+]/[H2O2] (mol/mol) equal to 0.11. According to the results, chemical oxidation using Fenton reagent was found to be too effective, especially for phenol removal. However, this method has limited removal efficiency for COD. [source] |