Channel Function (channel + function)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Channel Function

  • ion channel function


  • Selected Abstracts


    Thyroid hormone receptor , can control action potential duration in mouse ventricular myocytes through the KCNE1 ion channel subunit

    ACTA PHYSIOLOGICA, Issue 2 2010
    A. Mansén
    Abstract Aims:, The reduced heart rate and prolonged QTend duration in mice deficient in thyroid hormone receptor (TR) ,1 may involve aberrant expression of the K+ channel ,-subunit KCNQ1 and its regulatory ,-subunit KCNE1. Here we focus on KCNE1 and study whether increased KCNE1 expression can explain changes in cardiac function observed in TR,1-deficient mice. Methods:, TR-deficient, KCNE1-overexpressing and their respective wildtype (wt) mice were used. mRNA and protein expression were assessed with Northern and Western blot respectively. Telemetry was used to record electrocardiogram and temperature in freely moving mice. Patch-clamp was used to measure action potentials (APs) in isolated cardiomyocytes and ion currents in Chinese hamster ovary (CHO) cells. Results:, KCNE1 was four to 10-fold overexpressed in mice deficient in TR,1. Overexpression of KCNE1 with a heart-specific promoter in transgenic mice resulted in a cardiac phenotype similar to that in TR,1-deficient mice, including a lower heart rate and prolonged QTend time. Cardiomyocytes from KCNE1-overexpressing mice displayed increased AP duration. CHO cells transfected with expression plasmids for KCNQ1 and KCNE1 showed an outward rectifying current that was maximal at equimolar plasmids for KCNQ1-KCNE1 and decreased at higher KCNE1 levels. Conclusion:, The bradycardia and prolonged QTend time in hypothyroid states can be explained by altered K+ channel function due to decreased TR,1-dependent repression of KCNE1 expression. [source]


    The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2006
    G. T. Macleod
    Abstract Voltage-gated Ca2+ channels in nerve terminals open in response to action potentials and admit Ca2+, the trigger for neurotransmitter release. The cacophony gene encodes the primary presynaptic voltage-gated Ca2+ channel in Drosophila motor-nerve terminals. The cacts2 mutant allele of cacophony is associated with paralysis and reduced neurotransmission at non-permissive temperatures but the basis for the neurotransmission deficit has not been established. The cacts2 mutation occurs in the cytoplasmic carboxyl tail of the ,1 -subunit, not within the pore-forming trans-membrane domains, making it difficult to predict the mutation's impact. We applied a Ca2+ -imaging technique at motor-nerve terminals of mutant larvae to test the hypothesis that the neurotransmission deficit is a result of impaired Ca2+ entry. Presynaptic Ca2+ signals evoked by single and multiple action potentials showed a temperature-dependent reduction. The amplitude of the reduction was sufficient to account for the neurotransmission deficit, indicating that the site of the cacts2 mutation plays a role in Ca2+ channel activity. As the mutation occurs in a motif conserved in mammalian high-voltage-activated Ca2+ channels, we used a heterologous expression system to probe the effect of this mutation on channel function. The mutation was introduced into rat Cav2.1 channels expressed in human embryonic kidney cells. Patch-clamp analysis of mutant channels at the physiological temperature of 37 °C showed much faster inactivation rates than for wild-type channels, demonstrating that the integrity of this motif is critical for normal Cav2.1 channel inactivation. [source]


    Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2001
    Martin K. Schwarz
    Abstract Homomeric glutamate receptor (GluR) channels become spontaneously active when the last alanine residue within the invariant SYTANLAAF-motif in the third membrane segment is substituted by threonine. The same mutation in the orphan GluR,2 channel is responsible for neurodegeneration in ,Lurcher' (Lc) mice. Since most native GluRs are composed of different subunits, we investigated the effect of an Lc-mutated subunit in heteromeric kainate and AMPA receptors expressed in HEK293 cells. Kainate receptor KA2 subunits, either wild type or carrying the Lc mutation (KA2Lc), are retained inside the cell but are surface-expressed when assembled with GluR6 sununits. Importantly, KA2Lc dominates the gating of KA2Lc/GluR6WT channels, as revealed by spontaneous activation and by slowed desensitization and deactivation kinetics of ligand-activated whole-cell currents. Moreover, the AMPA receptor subunit GluR-BLc(Q) which forms spontaneously active homomeric channels with rectifying current-voltage relationships, dominates the gating of heteromeric GluR-BLc(Q)/GluR-A(R) channels. The spontaneous currents of these heteromeric AMPAR channels show linear current,voltage relationships, and the ligand-activated whole-cell currents display slower deactivation and desensitization kinetics than the respective wild-type channels. For heteromeric Lc-mutated kainate and AMPA receptors, the effects on kinetics were reduced relative to the homomeric Lc-mutated forms. Thus, an Lc-mutated subunit can potentially influence heteromeric channel function in vivo, and the severity of the phenotype will critically depend on the levels of homomeric GluRLc and heteromeric GluRLc/GluRWT channels. [source]


    Regulation of GluR2 promoter activity by neurotrophic factors via a neuron-restrictive silencer element

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2000
    Stefan Brené
    Abstract The AMPA glutamate receptor subunit GluR2, which plays a critical role in regulation of AMPA channel function, shows altered levels of expression in vivo after several chronic perturbations. To evaluate the possibility that transcriptional mechanisms are involved, we studied a 1254-nucleotide fragment of the 5,-promoter region of the mouse GluR2 gene in neural-derived cell lines. We focused on regulation of GluR2 promoter activity by two neurotrophic factors, which are known to be altered in vivo in some of the same systems that show GluR2 regulation. Glial-cell line derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) both induced GluR2 promoter activity. This was associated with increased expression of endogenous GluR2 immunoreactivity in the cells as measured by Western blotting. The effect of GDNF and BDNF appeared to be mediated via a NRSE (neuron-restrictive silencer element) present within the GluR2 promoter. The response to these neurotrophic factors was lost upon mutating or deleting this site, but not several other putative response elements present within the promoter. Moreover, overexpression of REST (restrictive element silencer transcription factor; also referred to as NRSF or neuron restrictive silencer factor), which is known to act on NRSEs in other genes to repress gene expression, blocked the ability of GDNF to induce GluR2 promoter activity. However, GDNF did not alter endogenous levels of REST in the cells. Together, these findings suggest that GluR2 expression can be regulated by neurotrophic factors via an apparently novel mechanism involving the NRSE present within the GluR2 gene promoter. [source]


    Nucleotide-binding domain 1 of cystic fibrosis transmembrane conductance regulator

    FEBS JOURNAL, Issue 17 2000
    Production of a suitable protein for structural studies
    Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This protein belongs to the large ATP-binding cassette (ABC) family of transporters. Most patients with cystic fibrosis bear a mutation in the nucleotide-binding domain 1 (NBD1) of CFTR, which plays a key role in the activation of the channel function of CFTR. Determination of the three dimensional structure of NBD1 is essential to better understand its structure,function relationship, and relate it to the biological features of CFTR. In this paper, we report the first preparation of recombinant His-tagged NBD1, as a soluble, stable and isolated domain. The method avoids the use of renaturing processes or fusion constructs. ATPase activity assays show that the recombinant domain is functional. Using tryptophan intrinsic fluorescence, we point out that the local conformation, in the region of the most frequent mutation ,F508, could differ from that of the nucleotide-binding subunit of histidine permease, the only available ABC structure. We have undertaken three dimensional structure determination of NBD1, and the first two dimensional 15N- 1H NMR spectra demonstrate that the domain is folded. The method should be applicable to the structural studies of NBD2 or of other NBDs from different ABC proteins of major biological interest, such as multidrug resistance protein 1 or multidrug resistance associated protein 1. [source]


    Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel,

    HEPATOLOGY, Issue 6 2008
    Stephen Griffin
    The hepatitis C virus (HCV) p7 protein plays a critical role during particle formation in cell culture and is required for virus replication in chimpanzees. The discovery that it displayed cation channel activity in vitro led to its classification within the "viroporin" family of virus-coded ion channel proteins, which includes the influenza A virus (IAV) M2 protein. Like M2, p7 was proposed as a potential target for much needed new HCV therapies, and this was supported by our finding that the M2 inhibitor, amantadine, blocked its activity in vitro. Since then, further compounds have been shown to inhibit p7 function but the relationship between inhibitory effects in vitro and efficacy against infectious virus is controversial. Here, we have sought to validate multiple p7 inhibitor compounds using a parallel approach combining the HCV infectious culture system and a rapid throughput in vitro assay for p7 function. We identify a genotype-dependent and subtype-dependent sensitivity of HCV to p7 inhibitors, in which results in cell culture largely mirror the sensitivity of recombinant protein in vitro; thus building separate sensitivity profiles for different p7 sequences. Inhibition of virus entry also occurred, suggesting that p7 may be a virion component. Second site effects on both cellular and viral processes were identified for several compounds in addition to their efficacy against p7 in vitro. Nevertheless, for some compounds antiviral effects were specific to a block of ion channel function. Conclusion: These data validate p7 inhibitors as prototype therapies for chronic HCV disease. (HEPATOLOGY 2008;48:1779-1790.) [source]


    Mrp2 modulates the activity of chloride channels in isolated hepatocytes

    HEPATOLOGY, Issue 1 2002
    Xinhua Li
    Adenosine triphosphate binding cassette family transport proteins are important organic ion transporters in hepatocytes but these molecules may also exhibit other functions. In the present study we have measured the effects of substrates of the canalicular organic ion transporter multidrug resistance associated protein 2 (Mrp2) on chloride channel activation and cell volume regulation. We found that substrates such as leukotriene D4, 17-,-estradiol glucuronide, and the leukotriene inhibitor MK-571 accelerated the activation of chloride channels by cell swelling and activated chloride channels in cytokine-pretreated hepatocytes. Two conjugated estrogens that are not Mrp2 substrates did not produce this effect. Hepatocytes derived from a strain of transport-deficient rats (TR,), which lack Mrp2 expression, showed none of these substrate effects. Coincident with their ability to activate channels, the Mrp2 substrates increased the rate of volume regulatory decrease by approximately 50% (P < .01), confirming that enhanced channel activation under this condition stimulated volume regulation. In TR-hepatocytes the Mrp2 substrate had no effect on volume regulation. In conclusion, Mrp2 plays a role in regulation of chloride channel function by reducing the lag time necessary for channel activation and consequently accelerating the process of cell volume regulation. Substrates of Mrp2 affect the ability of the protein to interact with chloride channels. These findings represent an alternative function of Mrp2 in hepatocytes. [source]


    Increased Right Ventricular Repolarization Gradients Promote Arrhythmogenesis in a Murine Model of Brugada Syndrome

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2010
    CLAIRE A. MARTIN M.R.C.P.
    Repolarization Gradients in Brugada Syndrome.,,Introduction: Brugada syndrome (BrS) is associated with loss of Na+ channel function and increased risks of a ventricular tachycardia exacerbated by flecainide but reduced by quinidine. Previous studies in nongenetic models have implicated both altered conduction times and repolarization gradients in this arrhythmogenicity. We compared activation latencies and spatial differences in action potential recovery between different ventricular regions in a murine Scn5a+/, BrS model, and investigated the effect of flecainide and quinidine upon these. Methods and Results: Langendorff-perfused wild-type and Scn5a+/, hearts were subjected to regular pacing and a combination of programmed electrical stimulation techniques. Monophasic action potentials were recorded from the right (RV) and left ventricular (LV) epicardium and endocardium before and following flecainide (10 ,M) or quinidine (5 ,M) treatment, and activation latencies measured. Transmural repolarization gradients were then calculated from the difference between neighboring endocardial and epicardial action potential durations (APDs). Scn5a+/, hearts showed decreased RV epicardial APDs, accentuating RV, but not LV, transmural gradients. This correlated with increased arrhythmic tendencies compared with wild-type. Flecainide increased RV transmural gradients, while quinidine decreased them, in line with their respective pro- and antiarrhythmic effects. In contrast, Scna5+/, hearts showed slowed conduction times in both RV and LV, exacerbated not only by flecainide but also by quinidine, in contrast to their differing effects on arrhythmogenesis. Conclusion: We use a murine genetic model of BrS to systematically analyze LV and RV action potential kinetics for the first time. This establishes a key role for accentuated transmural gradients, specifically in the RV, in its arrhythmogenicity. (J Cardiovasc Electrophysiol, Vol. 21, pp. 1153-1159) [source]


    Differentiation dependent expression of TRPA1 and TRPM8 channels in IMR-32 human neuroblastoma cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2009
    Lauri M. Louhivuori
    TRPA1 and TRPM8 are transient receptor potential (TRP) channels involved in sensory perception. TRPA1 is a non-selective calcium permeable channel activated by irritants and proalgesic agents. TRPM8 reacts to chemical cooling agents such as menthol. The human neuroblastoma cell line IMR-32 undergoes a remarkable differentiation in response to treatment with 5-bromo-2-deoxyuridine. The cells acquire a neuronal morphology with increased expression of N-type voltage gated calcium channels and neurotransmitters. Here we show using RT-PCR, that mRNA for TRPA1 and TRPM8 are strongly upregulated in differentiating IMR-32 cells. Using whole cell patch clamp recordings, we demonstrate that activators of these channels, wasabi, allyl-isothiocyanate (AITC) and menthol activate membrane currents in differentiated cells. Calcium imaging experiments demonstrated that AITC mediated elevation of intracellular calcium levels were attenuated by ruthenium red, spermine, and HC-030031 as well as by siRNA directed against the channel. This indicates that the detected mRNA level correlate with the presence of functional channels of both types in the membrane of differentiated cells. Although the differentiated IMR-32 cells responded to cooling many of the cells showing this response did not respond to TRPA1/TRPM8 channel activators (60% and 90% for AITC and menthol respectively). Conversely many of the cells responding to these activators did not respond to cooling (30%). This suggests that these channels have also other functions than cold perception in these cells. Furthermore, our results suggest that IMR-32 cells have sensory characteristics and can be used to study native TRPA1 and TRPM8 channel function as well as developmental expression. J. Cell. Physiol. 221: 67,74, 2009. © 2009 Wiley-Liss, Inc [source]


    Quinolinic acid modulates the activity of src family kinases in rat striatum: in vivo and in vitro studies

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2006
    Alessio Metere
    Abstract Quinolinic acid (QA) has been shown to evoke neurotoxic events via NMDA receptor (NMDAR) overactivation and oxidative stress. NMDARs are particularly vulnerable to free radicals, which can modulate protein tyrosine kinase (PTK) and phosphotyrosine phosphatase (PTP) activities. The src family of tyrosine kinases are associated with the NMDAR complex and regulate NMDA channel function. Because QA is an NMDAR agonist as well as a pro-oxidant agent, we investigated whether it may affect the activity of PTKs and PTPs in vivo and in vitro. In synaptosomes prepared from striata dissected 15 min, 30 min or 15 days after bilateral injection of QA we observed modulation of the phosphotyrosine pattern; a significant decrease in PTP activity; and a sustained increase in c-src and lyn activity at 15 and 30 min after treatment with QA, followed by a decrease 2 weeks later. Striatal synaptosomes treated in vitro with QA showed time- and dose-dependent modulation of c-src and lyn kinase activities. Moreover, the nitric oxide synthase inhibitor NG -nitro- l -arginine-methyl ester, the NMDAR antagonist d -2-amino-5-phosphonovaleric acid and pyruvate suppressed the QA-induced modulation of c-src activity. These findings suggest a novel feature of QA in regulating src kinase activity through the formation of reactive radical species and/or NMDAR overactivation. [source]


    Tibolone Rapidly Attenuates the GABAB Response in Hypothalamic Neurones

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2008
    J. Qiu
    Tibolone is primarily used for the treatment of climacteric symptoms. Tibolone is rapidly converted into three major metabolites: 3,- and 3,-hydroxy (OH)-tibolone, which have oestrogenic effects, and the ,4-isomer (,4-tibolone), which has progestogenic and androgenic effects. Because tibolone is effective in treating climacteric symptoms, the effects on the brain may be explained by the oestrogenic activity of tibolone. Using whole-cell patch clamp recording, we found previously that 17,-oestradiol (E2) rapidly altered ,-aminobutyric acid (GABA) neurotransmission in hypothalamic neurones through a membrane oestrogen receptor (mER). E2 reduced the potency of the GABAB receptor agonist baclofen to activate G-protein-coupled, inwardly rectifying K+ (GIRK) channels in hypothalamic neurones. Therefore, we hypothesised that tibolone may have some rapid effects through the mER and sought to elucidate the signalling pathway of tibolone's action using selective inhibitors and whole cell recording in ovariectomised female guinea pigs and mice. A sub-population of neurones was identified post hoc as pro-opiomelanocortin (POMC) neurones by immunocytochemical staining. Similar to E2, we have found that tibolone and its active metabolite 3,OH-tibolone rapidly reduced the potency of the GABAB receptor agonist baclofen to activate GIRK channels in POMC neurones. The effects were blocked by the ER antagonist ICI 182 780. Other metabolites of tibolone (3,OH-tibolone and ,4-tibolone) had no effect. Furthermore, tibolone (and 3,OH-tibolone) was fully efficacious in ER, knockout (KO) and ER,KO mice to attenuate GABAB responses. The effects of tibolone were blocked by phospholipase C inhibitor U73122. However, in contrast to E2, the effects of tibolone were not blocked by protein kinase C inhibitors or protein kinase A inhibitors. It appears that tibolone (and 3,OH-tibolone) activates phospholipase C leading to phosphatidylinositol bisphosphate metabolism and direct alteration of GIRK channel function. Therefore, tibolone may enhance synaptic efficacy through the Gq signalling pathways of mER in brain circuits that are critical for maintaining homeostatic functions. [source]


    Sizing up Ethanol-Induced Plasticity: The Role of Small and Large Conductance Calcium-Activated Potassium Channels

    ALCOHOLISM, Issue 7 2009
    Patrick J. Mulholland
    Small (SK) and large conductance (BK) Ca2+ -activated K+ channels contribute to action potential repolarization, shape dendritic Ca2+spikes and postsynaptic responses, modulate the release of hormones and neurotransmitters, and contribute to hippocampal-dependent synaptic plasticity. Over the last decade, SK and BK channels have emerged as important targets for the development of acute ethanol tolerance and for altering neuronal excitability following chronic ethanol consumption. In this mini-review, we discuss new evidence implicating SK and BK channels in ethanol tolerance and ethanol-associated homeostatic plasticity. Findings from recent reports demonstrate that chronic ethanol produces a reduction in the function of SK channels in VTA dopaminergic and CA1 pyramidal neurons. It is hypothesized that the reduction in SK channel function increases the propensity for burst firing in VTA neurons and increases the likelihood for aberrant hyperexcitability during ethanol withdrawal in hippocampus. There is also increasing evidence supporting the idea that ethanol sensitivity of native BK channel results from differences in BK subunit composition, the proteolipid microenvironment, and molecular determinants of the channel-forming subunit itself. Moreover, these molecular entities play a substantial role in controlling the temporal component of ethanol-associated neuroadaptations in BK channels. Taken together, these studies suggest that SK and BK channels contribute to ethanol tolerance and adaptive plasticity. [source]


    Diabetic neuropathies: components of etiology

    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2008
    David R. Tomlinson
    Abstract This review examines the putative role of glucose in the etiology of diabetic neuropathies. Excessive glucose generates several secondary metabolic anomalies , principally oxidative stress (via both the polyol pathway and glucoxidation) and non-enzymic glycation of macromolecules. The latter is also facilitated by glucoxidation. These metabolic deviations trigger cellular responses that are inappropriate to normal function. Principal among these are neurotrophic deficits and phosphorylation of mitogen-activated protein kinases (MAPK). Downstream of these events are aberrant ion channel function and disordered gene expression, leading to changes in cellular phenotype. This leads directly to disordered nerve conduction, a recognised early clinical sign, and indirectly, via as yet undisclosed links, to sensory loss and axonopathy. Recent work also links MAPK activation to the development of neuropathic pain. [source]


    Impaired inhibitory G-protein function contributes to increased calcium currents in rats with diabetic neuropathy

    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2002
    KE Hall
    There is a growing body of evidence that sensory neuropathy in diabetes is associated with abnormal calcium signaling in dorsal root ganglion (DRG) neurons. Enhanced influx of calcium via multiple high-threshold calcium currents is present in sensory neurons of several models of diabetes mellitus, including the spontaneously diabetic BioBred/Worchester (BB/W) rat and the chemical streptozotocin (STZ)-induced rat. We believe that abnormal calcium signaling in diabetes has pathologic significance as elevation of calcium influx and cytosolic calcium release has been implicated in other neurodegenerative conditions characterized by neuronal dysfunction and death. Using electrophysiologic and pharmacologic techniques, the present study provides evidence that significant impairment of G-protein-coupled modulation of calcium channel function may underlie the enhanced calcium entry in diabetes. N- and P-type voltage-activated, high-threshold calcium channels in DRGs are coupled to mu opiate receptors via inhibitory G(o)-type G proteins. The responsiveness of this receptor coupled model was tested in dorsal root ganglion (DRG) neurons from spontaneously-diabetic BB/W rats, and streptozotocin-induced (STZ) diabetic rats. Intracellular dialysis with GTPgammaS decreased calcium current amplitude in diabetic BB/W DRG neurons compared with those of age-matched, nondiabetic controls, suggesting that inhibitory G-protein activity was diminished in diabetes, resulting in larger calcium currents. Facilitation of calcium current density (I(DCa)) by large-amplitude depolarizing prepulses (proposed to transiently inactivate G proteins), was significantly less effective in neurons from BB/W and STZ-induced diabetic DRGs. Facilitation was enhanced by intracellular dialysis with GTPgammaS, decreased by pertussis toxin, and abolished by GDPbetaS within 5 min. Direct measurement of GTPase activity using opiate-mediated GTPgamma[(35)S] binding, confirmed that G-protein activity was significantly diminished in STZ-induced diabetic neurons compared with age-matched nondiabetic controls. Diabetes did not alter the level of expression of mu opiate receptors and G-protein alpha subunits. These studies indicate that impaired regulation of calcium channels by G proteins is an important mechanism contributing to enhanced calcium influx in diabetes. [source]


    KATP -mediated Vasodilation is Impaired in Obese Zucker Rats

    MICROCIRCULATION, Issue 6 2008
    BENJAMIN L. HODNETT
    ABSTRACT Objective: Skeletal muscle blood flow during exercise is impaired in obesity. We tested the hypothesis that the attenuated vasodilation in skeletal muscle arterioles of obese Zucker rats (OZR) is due to altered KATP channel-mediated vasodilation. Materials and Methods: KATP channel function was determined in isolated skeletal muscle arterioles in response to the KATP opener cromakalim (0.1,10 , M) during normal myogenic tone and , -adrenergic-mediated tone (0.1 , M phenylephrine). The spinotrapezius muscle was prepared and the vasodilatory responses to muscle stimulation or iloprost (0.028,2.8 , M) were observed before and after the application of the KATP inhibitor, glibenclamide (10 , M). Channel subunit expression was determined by using western blot analyses. Results: Cromakalim concentration-response curves were shifted in OZR as compared to lean controls. OZR exhibited impaired functional and iloprost-induced vasodilation as compared to the lean controls. Glibenclamide inhibited the functional and iloprost-induced dilation in the lean rats with no effects in the obese animals. Channel subunit expression was similar in femoral arteries. Conclusion:The impaired functional vasodilation in the OZR is associated with altered KATP channel sensitivity. [source]


    Painful neuropathy alters the effect of gabapentin on sensory neuron excitability in rats

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2004
    A. Kanai
    Background:, Pain following peripheral nerve injury is associated with increased excitability of sensory neurons. Gabapentin (GBP), a novel anticonvulsant with an uncertain mechanism of action, is an effective treatment for neuropathic pain. We therefore investigated the effect of GBP on dorsal root ganglion (DRG) neurons from normal rats and those with painful peripheral nerve injury. Methods:, Dorsal root ganglions were excised from rats with neuropathic pain behaviour following chronic constriction injury (CCI) of the sciatic nerve, and from normal rats. Intercellular recordings were made from myelinated sensory neuron somata using a microelectrode technique from DRGs bathed in artificial CSF with or without GBP (100 µM). Results:, Compared with normal neurons, injury decreased the refractory interval (RI) for repeat action potential (AP) generation increased the number of APs during sustained depolariza- tion, and shortened the after hyperpolarization following an AP. In normal neurons, GBP decreased the RI and increased the AP number during sustained depolarization. In an opposite fashion, the result of GBP application to injured neurons was a decreased number of APs during depolarization and no change in RI. In injured neurons only, GBP increased the time-to-peak for AP depolarization. Conclusions:, Nerve injury by CCI is associated with increased sensory neuron excitability, associated with a decreased AHP. In normal peripheral sensory neurons, GBP has pro-excitatory effects, whereas GBP decreases excitability in injured neurons, possibly on the basis of altered sodium channel function. [source]


    Axonal excitability properties in hemifacial spasm

    MOVEMENT DISORDERS, Issue 9 2007
    Arun V. Krishnan PhD, FRACP
    Abstract Hemifacial spasm (HFS) is characterized by involuntary, irregular contractions of muscles innervated by the facial nerve. Whether the facial nerve has a relative predisposition for ectopic activity has not been clarified. Nerve excitability techniques, which provide information about membrane potential and axonal ion channel function, were initially measured in 12 control subjects looking for biophysical differences that may predispose the facial nerve to generate ectopic activity. In a second series of studies, facial nerve excitability was assessed in nine HFS patients. In both series, stimulus,response behavior, threshold electrotonus, a current threshold relationship, and the recovery of excitability following supramaximal stimulation were recorded following stimulation of the facial nerve. When compared to normative data from nerves in the upper and lower limbs, there was a relative "fanning-in" of threshold electrotonus, reduced superexcitability, and increased subexcitability in facial nerve studies from control subjects (P < 0.05), consistent with relative axonal depolarization. These findings may underlie the propensity for the facial nerve to develop ectopic impulse activity in motor axons. In the HFS patient study, there were no significant differences in distal facial nerve excitability properties from the affected side in HFS patients when compared either to the unaffected side or to normative facial nerve data. It is concluded that the impulse generator underlying HFS must consequently be sited more proximally and does not cause a generalized disturbance of motor axon excitability. © 2007 Movement Disorder Society [source]


    Ion channel remodeling in gastrointestinal inflammation

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 10 2010
    H. I. Akbarali
    Abstract Background,Gastrointestinal inflammation significantly affects the electrical excitability of smooth muscle cells. Considerable progress over the last few years have been made to establish the mechanisms by which ion channel function is altered in the setting of gastrointestinal inflammation. Details have begun to emerge on the molecular basis by which ion channel function may be regulated in smooth muscle following inflammation. These include changes in protein and gene expression of the smooth muscle isoform of L-type Ca2+ channels and ATP-sensitive K+ channels. Recent attention has also focused on post-translational modifications as a primary means of altering ion channel function in the absence of changes in protein/gene expression. Protein phosphorylation of serine/theronine or tyrosine residues, cysteine thiol modifications, and tyrosine nitration are potential mechanisms affected by oxidative/nitrosative stress that alter the gating kinetics of ion channels. Collectively, these findings suggest that inflammation results in electrical remodeling of smooth muscle cells in addition to structural remodeling. Purpose,The purpose of this review is to synthesize our current understanding regarding molecular mechanisms that result in altered ion channel function during gastrointestinal inflammation and to address potential areas that can lead to targeted new therapies. [source]


    From molecules to motion: altering neuronal ion channel function can lead to changes in intestinal motility

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 5 2007
    D. S. Strong
    First page of article [source]


    SYMPOSIUM REVIEW: Revealing the structural basis of action of hERG potassium channel activators and blockers

    THE JOURNAL OF PHYSIOLOGY, Issue 17 2010
    Matthew Perry
    Human ether-á-go-go related gene (hERG) potassium (K+) channels play a critical role in cardiac action potential repolarization. This is due, in large part, to the unique gating properties of these channels, which are characterized by relatively slow activation and an unusually fast and voltage-dependent inactivation. A large number of structurally diverse compounds bind to hERG and carry an unacceptably high risk of causing arrhythmias. On the other hand, drugs that increase hERG current may, at least in principle, prove useful for treatment of long QT syndrome. A few blockers have been shown to increase hERG current at potentials close to the threshold for channel activation , a process referred to as facilitation. More recently, a novel group of hERG channel activators have been identified that slow deactivation and/or attenuate inactivation. Structural determinants for the action of two different types of activators have been identified. These compounds bind at sites that are distinct from each other and also separate from the binding site of high affinity blockers. They reveal not only novel ways of chemically manipulating hERG channel function, but also interactions between structural domains that are critical to normal activation and inactivation gating. [source]


    SYMPOSIUM REVIEW: Lipid microdomains and the regulation of ion channel function

    THE JOURNAL OF PHYSIOLOGY, Issue 17 2010
    Caroline Dart
    Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or ,rafts'. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein,lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function. [source]


    Dysregulation of human bestrophin-1 by ceramide-induced dephosphorylation

    THE JOURNAL OF PHYSIOLOGY, Issue 18 2009
    Qinghuan Xiao
    Best vitelliform macular dystrophy is an inherited autosomal dominant, juvenile onset form of macular degeneration caused by mutations in a chloride ion channel, human bestrophin-1 (hBest1). Mutations in Best1 have also been linked to several other forms of retinopathy. In addition to mutations, hBest1 dysfunction might come about by disruption of other processes that regulate Best1 function. Here we show that hBest1 chloride channel activity is regulated by ceramide and phosphorylation. We have identified a protein kinase C (PKC) phosphorylation site (serine 358) in hBest1 that is important for sustained channel function. Channel activity is maintained by PKC activators, protein phosphatase inhibitors, or pseudo-phosphorylation by substitution of glutamic acid for serine 358. When ceramide levels are elevated by exogenous addition of ceramide to the bath, by addition of bacterial sphingomyelinase, or by hypertonic stress, S358 is rapidly dephosphorylated. The dephosphorylation is mediated by protein phosphatase 2A. Hypertonic stress-induced dephosphorylation is blocked by a dihydroceramide, an inactive form of ceramide, and manumycin, an inhibitor of neutral sphingomyelinase. Our results support a model in which ceramide accumulation during early stages of retinopathy inhibits hBest1 function, leading to abnormal fluid transport across the retina, and enhanced inflammation. [source]


    Mechanisms by which atrial fibrillation-associated mutations in the S1 domain of KCNQ1 slow deactivation of IKs channels

    THE JOURNAL OF PHYSIOLOGY, Issue 17 2008
    Lioara Restier
    The slow delayed rectifier K+ current (IKs) is a major determinant of action potential repolarization in the heart. IKs channels are formed by coassembly of pore-forming KCNQ1 ,-subunits and ancillary KCNE1 ,-subunits. Two gain of function mutations in KCNQ1 subunits (S140G and V141M) have been associated with atrial fibrillation (AF). Previous heterologous expression studies found that both mutations caused IKs to be instantaneously activated, presumably by preventing channel closure. The purpose of this study was to refine our understanding of the channel gating defects caused by these two mutations located in the S1 domain of KCNQ1. Site-directed mutagenesis was used to replace S140 or V141 with several other natural amino acids. Wild-type and mutant channels were heterologously expressed in Xenopus oocytes and channel function was assessed with the two-microelectrode voltage clamp technique. Long intervals between voltage clamp pulses revealed that S140G and V141M KCNQ1-KCNE1 channels are not constitutively active as previously reported, but instead exhibit extremely slow deactivation. The slow component of IKs deactivation was decreased 62-fold by S140G and 140-fold by the V141M mutation. In addition, the half-point for activation of these mutant IKs channels was ,50 mV more negative than wild-type channels. Other substitutions of S140 or V141 in KCNQ1 caused variable shifts in the voltage dependence of activation, but slowed IKs deactivation to a much lesser extent than the AF-associated mutations. Based on a published structural model of KCNQ1, S140 and V141 are located near E160 in S2 and R237 in S4, two charged residues that could form a salt bridge when the channel is in the open state. In support of this model, mutational exchange of E160 and R237 residues produced a constitutively open channel. Together our findings suggest that altered charge-pair interactions within the voltage sensor module of KCNQ1 subunits may account for slowed IKs deactivation induced by S140 or V141. [source]


    Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram

    THE JOURNAL OF PHYSIOLOGY, Issue 10 2008
    Deb Kumar Mojumder
    Voltage-gated sodium channels (Nav channels) in retinal neurons are known to contribute to the mammalian flash electroretinogram (ERG) via activity of third-order retinal neurons, i.e. amacrine and ganglion cells. This study investigated the effects of tetrodotoxin (TTX) blockade of Nav channels on the b-wave, an ERG wave that originates mainly from activity of second-order retinal neurons. ERGs were recorded from anaesthetized Brown Norway rats in response to brief full-field flashes presented over a range of stimulus energies, under dark-adapted conditions and in the presence of steady mesopic and photopic backgrounds. Recordings were made before and after intravitreal injection of TTX (,3 ,m) alone, 3,6 weeks after optic nerve transection (ONTx) to induce ganglion cell degeneration, or in combination with an ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 200 ,m) to block light-evoked activity of inner retinal, horizontal and OFF bipolar cells, or with the glutamate agonist N -methyl- d -aspartate (NMDA, 100,200 ,m) to reduce light-evoked inner retinal activity. TTX reduced ERG amplitudes measured at fixed times corresponding to b-wave time to peak. Effects of TTX were seen under all background conditions, but were greatest for mesopic backgrounds. In dark-adapted retina, b-wave amplitudes were reduced only when very low stimulus energies affecting the inner retina, or very high stimulus energies were used. Loss of ganglion cells following ONTx did not affect b-wave amplitudes, and injection of TTX in eyes with ONTx reduced b-wave amplitudes by the same amount for each background condition as occurred when ganglion cells were intact, thereby eliminating a ganglion cell role in the TTX effects. Isolation of cone-driven responses by presenting test flashes after cessation of a rod-saturating conditioning flash indicated that the TTX effects were primarily on cone circuits contributing to the mixed rod,cone ERG. NMDA significantly reduced only the additional effects of TTX on the mixed rod,cone ERG observed under mesopic conditions, implicating inner retinal involvement in those effects. After pharmacological blockade with CNQX, TTX still reduced b-wave amplitudes in cone-isolated ERGs indicating Nav channels in ON cone bipolar cells themselves augment b-wave amplitude and sensitivity. This augmentation was largest under dark-adapted conditions, and decreased with increasing background illumination, indicating effects of background illumination on Nav channel function. These findings indicate that activation of Nav channels in ON cone bipolar cells affects the b-wave of the rat ERG and must be considered when analysing results of ERG studies of retinal function. [source]


    Calmodulin binding to M-type K+ channels assayed by TIRF/FRET in living cells

    THE JOURNAL OF PHYSIOLOGY, Issue 9 2008
    Manjot Bal
    Calmodulin (CaM) binds to KCNQ2,4 channels within their carboxy termini, where it regulates channel function. The existing data have not resolved the Ca2+ dependence of the interaction between the channels and CaM. We performed glutathione S-transferase (GST)-pull-down assays between purified KCNQ2,4 carboxy termini and CaM proteins to determine the Ca2+ dependence of the interaction in vitro. The assays showed substantial Ca2+ dependence of the interaction of the channels with wild-type (WT) CaM, but not with dominant-negative (DN) CaM. To demonstrate CaM,channel interactions in individual living cells, we performed fluorescence resonance energy transfer (FRET) between ECFP-tagged KCNQ2,4 channels and EYFP-tagged CaM expressed in CHO cells, performed under total internal reflection fluorescence (TIRF) microscopy, in which excitation light only penetrates several hundred nanometres into the cell, thus isolating membrane events. FRET was assayed between the channels and either WT or DN CaM, performed under conditions of normal [Ca2+]i, low [Ca2+]i or high [Ca2+]i induced by empirically optimized bathing solutions. The FRET data suggest a strong Ca2+ dependence for the interaction between WT CaM and KCNQ2, but less so for KCNQ3 and KCNQ4. FRET between all KCNQ2,4 channels and DN CaM was robust, and not significantly Ca2+ dependent. These data show interactions between CaM and KCNQ channels in living cells, and suggest that the interactions between KCNQ2,4 channels and CaM are likely to have Ca2+ -dependent and Ca2+ -independent components. [source]


    cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes

    THE JOURNAL OF PHYSIOLOGY, Issue 3 2007
    Sunita Warrier
    Many different receptors can stimulate cAMP synthesis in the heart, but not all elicit the same functional responses. For example, it has been recognized for some time that prostaglandins such as PGE1 increase cAMP production and activate PKA, but they do not elicit responses like those produced by ,-adrenergic receptor (,AR) agonists such as isoproterenol (isoprenaline), even though both stimulate the same signalling pathway. In the present study, we confirm that isoproterenol, but not PGE1, is able to produce cAMP-dependent stimulation of the L-type Ca2+ current in guinea pig ventricular myocytes. This is despite finding evidence that these cells express EP4 prostaglandin receptors, which are known to activate Gs -dependent signalling pathways. Using fluorescence resonance energy transfer-based biosensors that are either freely diffusible or bound to A kinase anchoring proteins, we demonstrate that the difference is due to the ability of isoproterenol to stimulate cAMP production in cytosolic and caveolar compartments of intact cardiac myocytes, while PGE1 only stimulates cAMP production in the cytosolic compartment. Unlike other receptor-mediated responses, compartmentation of PGE1 responses was not due to concurrent activation of a Gi -dependent signalling pathway or phosphodiesterase activity. Instead, compartmentation of the PGE1 response in cardiac myocytes appears to be due to transient stimulation of cAMP in a microdomain that can communicate directly with the bulk cytosolic compartment but not the caveolar compartment associated with ,AR regulation of L-type Ca2+ channel function. [source]


    ,Practice without theory': a neuroanthropological perspective on embodied learning

    THE JOURNAL OF THE ROYAL ANTHROPOLOGICAL INSTITUTE, Issue 2010
    Greg Downey
    This paper, drawing on research on skill acquisition and sports training, asks two questions. First, how does the mimetic channel function and thus limit what can be acquired by bodily enculturation? Second, given that it was acquired through imitation, what must be the nature of the resulting bodily knowledge? These questions are addressed through a close examination of movement education, especially its neurological, psychological, and interactional dynamics in the Afro-Brazilian art capoeira. The study of embodied knowledge and its development in bodily practices suggests that gaining bodily skills requires more than ,knowledge', involving changes in physiology, perception, comportment, and behaviour patterns in unsystematic, diverse modes. Embodied knowledge from this perspective appears more complex, less systematic or susceptible to structural account, than typically modelled. Résumé À partir de travaux sur l'acquisition de compétences et l'entraînement sportif, l'article pose deux questions. D'une part, comment fonctionne le canal mimétique, et comment limite-t-il ce qui peut être acquis par une enculturation corporelle ? D'autre part, sachant que l'apprentissage s'est fait par imitation, quelle peut être la nature des connaissances corporelles en résultant ? Ces questions sont abordées par le biais d'un examen attentif de l'éducation au mouvement, et notamment de sa dynamique neurologique, psychologique et interactive, dans l'art afro-brésilien de la capoeira. L'étude des connaissances incorporées et de leur développement dans les pratiques corporelles suggère que l'acquisition de compétences physiques nécessite plus que des « connaissances » et implique des changements physiologiques, perceptifs et comportementaux de nature diverse et non systématique. De ce point de vue, les connaissances incorporées semblent plus complexes, moins systématiques ou susceptibles de faire l'objet d'un compte-rendu structural, que dans les modèles classiques. [source]


    Single Nucleotide Polymorphisms and Haplotype of Four Genes Encoding Cardiac Ion Channels in Chinese and their Association with Arrhythmia

    ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2008
    Yu Zhang Ph.D.
    Background: Many studies revealed that variations in cardiac ion channels would cause cardiac arrhythmias or act as genetic risk factors. We hypothesized that specific single nucleotide polymorphisms in cardiac ion channels were associated with cardiac rhythm disturbance in the Chinese population. Method: We analyzed 160 nonfamilial cardiac arrhythmia patients and 176 healthy individuals from which 81 individuals were selected for association study, and a total of 19 previously reported SNPs in four cardiac ion channel genes (KCNQ1, KCNH2, SCN5A, KCNE1) were genotyped. Results: The frequency of KCNQ1 1638G>A, as well as the haplotype harboring KCNQ1 1638A, KCNQ1 1685 + 23G and 1732 + 43T (haplotype AGT) was significantly higher in healthy controls than in arrhythmia patients. This finding implicated that this haplotype (AGT) might be a protective factor against arrhythmias. Conclusions: Our study provided important information to elucidate the effect of SNPs of cardiac ion channel genes on channel function and susceptibility to cardiac arrhythmias in Chinese population. [source]


    Glutamate levels and activity of the T cell voltage-gated potassium Kv1.3 channel in patients with systemic lupus erythematosus

    ARTHRITIS & RHEUMATISM, Issue 5 2008
    C. Poulopoulou
    Objective Alterations in glutamate homeostasis and Kv1.3 voltage-gated potassium channel function have been independently associated with T cell dysfunction, whereas selective blockade of Kv1.3 channels inhibits T cell activation and improves T cell,mediated manifestations in animal models of autoimmunity. Because low extracellular glutamate concentrations enhance the activity of this channel in normal T cells ex vivo, we undertook this study to examine serum glutamate concentrations and Kv1.3 channel activity in patients with systemic lupus erythematosus (SLE). Methods We used high-performance liquid chromatography for glutamate measurements, and we used the whole-cell patch-clamp technique for electrophysiologic studies performed in freshly isolated, noncultured peripheral T cells. Results Mean ± SD serum concentrations of glutamate were lower in patients with either clinically quiescent SLE (77 ± 27 ,M [n = 18]) or active SLE (61 ± 36 ,M [n = 16]) than in healthy controls (166 ± 64 ,M [n = 24]) (both P < 0.0001). The intrinsic gating properties of the Kv1.3 channels in lupus T cells were found to be comparable with those in healthy control,derived T cells. Notably, electrophysiologic data from SLE patient,derived T cells exposed to extracellular glutamate concentrations similar to their respective serum levels (50 ,M) demonstrated Kv1.3 current responses enhanced by almost 20% (P < 0.01) compared with those subsequently obtained from the same cell in the presence of glutamate concentrations within control serum levels (200 ,M). Conclusion Based on the key role of Kv1.3 channel activity in lymphocyte physiology, an enhancing in vivo effect of low serum glutamate concentrations on the functional activity of this channel may contribute to lupus T cell hyperactivity. Studies to further elucidate Kv1.3 responses in SLE, as well as the possible pathogenetic role of this unsuspected metabolic abnormality, may have therapeutic implications for SLE patients. [source]


    Role of redox state in modulation of ion channel function by fatty acids and phospholipids

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2003
    Zhiguo Wang
    British Journal of Pharmacology (2003) 139, 681,683. doi:10.1038/sj.bjp.0705307 [source]