Channel Downregulation (channel + downregulation)

Distribution by Scientific Domains


Selected Abstracts


Bepridil Reverses Atrial Electrical Remodeling and L-Type Calcium Channel Downregulation in a Canine Model of Persistent Atrial Tachycardia

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 7 2007
KUNIHIRO NISHIDA M.D.
Introduction: This study tested whether bepridil, a multichannel blocker, would reverse electrical remodeling induced by persistent atrial tachycardia. Methods and Results: Fourteen dogs were subjected to rapid atrial pacing at 400 bpm for 6 weeks after atrioventricular block was created to control the ventricular rate. During the study period, seven dogs were given placebo for 6 weeks (Control group), and seven were given placebo for 3 weeks, followed by 3 weeks of bepridil (10 mg/kg/day, Bepridil group). The atrial effective refractory period (ERP) and the inducibility and duration of atrial fibrillation (AF) were determined on a weekly basis. After 6 weeks, expression of L-type calcium channel ,1C messenger ribonucleic acid (mRNA) was quantified by real-time reverse transcription-polymerase chain reaction. In the Control group, ERP was shortened and the inducibility and duration of AF increased through the 6-week period. In the Bepridil group, the same changes occurred during the first 3 weeks, but were gradually reversed with bepridil. After 6 weeks, ERP was longer, AF inducibility was lower, and AF duration was shorter in Bepridil group than in the Control group. Expression of ,1C mRNA was decreased by 64% in the Control group (P < 0.05 vs sham), but in the Bepridil group, it was not different compared with the sham dogs. As a whole group of dogs, ERP was positively correlated with ,1C mRNA expression. Conclusion: Bepridil reverses the electrophysiological consequences of atrial remodeling to some extent and L-type calcium channel downregulation in a canine model of atrial tachycardia. [source]


Exercise training attenuates ageing-induced BKCa channel downregulation in rat coronary arteries

EXPERIMENTAL PHYSIOLOGY, Issue 6 2010
Sulayma Albarwani
Physical inactivity and ageing are widely recognized as risk factors for development of coronary artery disease. One of the characteristic changes that occurs in aged coronary artery is downregulation of their large-conductance voltage- and calcium-activated K+ (BKCa) channels. In this study, we investigated the effects of moderate exercise training (ET) on the activity of BKCa channels in coronary arteries of aged rats. Old Fischer 344 rats (23,26 months old) were randomly assigned to sedentary (O-SED, n= 24) or exercise-trained groups (O-ET, n= 28). The O-ET rats underwent a progressive treadmill exercise-training programme for 60 min day,1, 5 days week,1 for 12 weeks. Young animals were used for comparison. Coronary arteries were mounted on a wire myograph, and contractions in response to 1, 10, 30, 50 and 100 nmol l,1 iberiotoxin were compared. Iberiotoxin (100 nmol l,1) contracted coronary arteries of young, O-SED and O-ET rats by 115 ± 14, 36 ± 5.6 and 61 ± 5% of 5-hydroxytryptamine-induced contractions, respectively. Patch-clamp studies revealed a larger magnitude of BKCa current in young (104 ± 15.6 pA pF,1) compared with O-ET (44 ± 9 pA pF,1) and least in O-SED coronary smooth muscle cells (8.6 ± 2 pA pF,1). Western immunoblotting was performed to study expression levels of BKCa channel proteins. The , and ,1 subunits of the BKCa channel were reduced by 40 ± 3.5 and 30 ± 2.6%, respectively, in coronary arteries of old compared with young rats, and ET attenuated this reduction in expression level to 28 ± 2 and 12 ± 4%, respectively. Our results showed that ageing was associated with a reduction in BKCa channels, and ET partly reversed this reduction. We conclude that low-intensity ET may be beneficial in restoring age-related decline in coronary vasodilatory properties mediated by BKCa channels. [source]


Bepridil Reverses Atrial Electrical Remodeling and L-Type Calcium Channel Downregulation in a Canine Model of Persistent Atrial Tachycardia

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 7 2007
KUNIHIRO NISHIDA M.D.
Introduction: This study tested whether bepridil, a multichannel blocker, would reverse electrical remodeling induced by persistent atrial tachycardia. Methods and Results: Fourteen dogs were subjected to rapid atrial pacing at 400 bpm for 6 weeks after atrioventricular block was created to control the ventricular rate. During the study period, seven dogs were given placebo for 6 weeks (Control group), and seven were given placebo for 3 weeks, followed by 3 weeks of bepridil (10 mg/kg/day, Bepridil group). The atrial effective refractory period (ERP) and the inducibility and duration of atrial fibrillation (AF) were determined on a weekly basis. After 6 weeks, expression of L-type calcium channel ,1C messenger ribonucleic acid (mRNA) was quantified by real-time reverse transcription-polymerase chain reaction. In the Control group, ERP was shortened and the inducibility and duration of AF increased through the 6-week period. In the Bepridil group, the same changes occurred during the first 3 weeks, but were gradually reversed with bepridil. After 6 weeks, ERP was longer, AF inducibility was lower, and AF duration was shorter in Bepridil group than in the Control group. Expression of ,1C mRNA was decreased by 64% in the Control group (P < 0.05 vs sham), but in the Bepridil group, it was not different compared with the sham dogs. As a whole group of dogs, ERP was positively correlated with ,1C mRNA expression. Conclusion: Bepridil reverses the electrophysiological consequences of atrial remodeling to some extent and L-type calcium channel downregulation in a canine model of atrial tachycardia. [source]


A Metabolic Mechanism For Cardiac K+ Channel Remodelling

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2002
George J Rozanski
SUMMARY 1. Electrical remodelling of the ventricle is a common pathogenic feature of cardiovascular disease states that lead to heart failure. Experimental data suggest this change in electrophysiological phenotype is largely due to downregulation of K+ channels involved in repolarization of the action potential. 2. Voltage-clamp studies of the transient outward current (Ito) in diabetic cardiomyopathy support a metabolic mechanism for K+ channel downregulation. In particular, Ito density is significantly increased in diabetic rat isolated ventricular myocytes treated in vitro with insulin or agents that activate pyruvate dehydrogenase. Recent data suggest this mechanism is not limited to diabetic conditions, because metabolic stimuli that upregulate Ito in diabetic rat myocytes act similarly in non- diabetic models of heart failure. 3. Depressed Ito channel activity is also reversed by experimental conditions that increase myocyte levels of reduced glutathione, indicating that oxidative stress is involved in electrical remodelling. Moreover, upregulation of Ito density by activators of glucose utilization is blocked by inhibitors of glutathione metabolism, supporting the premise that there is a functional link between glucose utilization and the glutathione system. 4. Electrophysiological studies of diabetic and non-diabetic disease conditions affecting the heart suggest Ito channels are regulated by a redox-sensitive mechanism, where glucose utilization plays an essential role in maintaining a normally reduced state of the myocyte. This hypothesis has implications for clinical approaches aimed at reversing pathogenic electrical remodelling in a variety of cardiovascular disease states. [source]