Home About us Contact | |||
Channel Activation (channel + activation)
Kinds of Channel Activation Selected AbstractsRegulatory Mechanisms and Physiological Relevance of a Voltage-Gated H+ Channel in Murine Osteoclasts: Phorbol Myristate Acetate Induces Cell Acidosis and the Channel Activation,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003Hiroyuki Mori Abstract The voltage-gated H+ channel is a powerful H+ extruding mechanism of osteoclasts, but its functional roles and regulatory mechanisms remain unclear. Electrophysiological recordings revealed that the H+ channel operated on activation of protein kinase C together with cell acidosis. Introduction: H+ is a key signaling ion in bone resorption. In addition to H+ pumps and exchangers, osteoclasts are equipped with H+ conductive pathways to compensate rapidly for pH imbalance. The H+ channel is distinct in its strong H+ extrusion ability and voltage-dependent gatings. Methods: To investigate how and when the H+ channel is available in functional osteoclasts, the effects of phorbol 12-myristate 13-acetate (PMA), an activator for protein kinase C, on the H+ channel were examined in murine osteoclasts generated in the presence of soluble RANKL (sRANKL) and macrophage-colony stimulating factor (M-CSF). Results and Conclusions: Whole cell recordings clearly showed that the H+ current was enhanced by increasing the pH gradient across the plasma membrane (,pH), indicating that the H+ channel changed its activity by sensing ,pH. The reversal potential (Vrev) was a valuable tool for the real-time monitoring of ,pH in clamped cells. In the permeabilized patch, PMA (10 nM-1.6 ,M) increased the current density and the activation rate, slowed decay of tail currents, and shifted the threshold toward more negative voltages. In addition, PMA caused a negative shift of Vrev, suggesting that intracellular acidification occurred. The PMA-induced cell acidosis was confirmed using a fluorescent pH indicator (BCECF), which recovered quickly in a K+ -rich alkaline solution, probably through the activated H+ channel. Both cell acidosis and activation of the H+ channel by PMA were inhibited by staurosporine. In ,80% of cells, the PMA-induced augmentation in the current activity remained after compensating for the ,pH changes, implying that both ,pH-dependent and -independent mechanisms mediated the channel activation. Activation of the H+ channel shifted the membrane potential toward Vrev. These data suggest that the H+ channel may contribute to regulation of the pH environments and the membrane potential in osteoclasts activated by protein kinase C. [source] Gating of the expressed T-type Cav3.1 calcium channels is modulated by Ca2+ACTA PHYSIOLOGICA, Issue 4 2006L. Lacinová Abstract Aim:, We have investigated the influence of Ca2+ ions on the basic biophysical properties of T-type calcium channels. Methods:, The Cav3.1 calcium channel was transiently expressed in HEK 293 cells. Current was measured using the whole cell patch clamp technique. Ca2+ or Na+ ions were used as charge carriers. The intracellular Ca2+ was either decreased by the addition of 10 mm ethyleneglycoltetraacetic acid (EGTA) or increased by the addition of 200 ,m Ca2+ into the non-buffered intracellular solution. Various combinations of extra- and intracellular solutions yielded high, intermediate or low intracellular Ca2+ levels. Results:, The amplitude of the calcium current was independent of intracellular Ca2+ concentrations. High levels of intracellular Ca2+ accelerated significantly both the inactivation and the activation time constants of the current. The replacement of extracellular Ca2+ by Na+ as charge carrier did not affect the absolute value of the activation and inactivation time constants, but significantly enhanced the slope factor of the voltage dependence of the inactivation time constant. Slope factors of voltage dependencies of channel activation and inactivation were significantly enhanced. The recovery from inactivation was faster when Ca2+ was a charge carrier. The number of available channels saturated for membrane voltages more negative than ,100 mV for the Ca2+ current, but did not reach steady state even at ,150 mV for the Na+ current. Conclusions:, Ca2+ ions facilitate transitions of Cav3.1 channel from open into closed and inactivated states as well as backwards transition from inactivated into closed state, possibly by interacting with its voltage sensor. [source] Parasitoid wasp sting: A cocktail of GABA, taurine, and ,-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach hostDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2006Eugene L. Moore Abstract The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists ,-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. © 2006 Wiley Periodicals, Inc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cellsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004Takahiro Yasuda Abstract The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel , and ,2,, subunits on expression levels and biophysical properties of three different types (Cav1.2, Cav2.1 and Cav2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Cav1.2 and Cav2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel , subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel ,1 subunit, and ,3 subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the ,2,, subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Cav2 channel family, appears to act synergistically with , subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by , and by ,2,, subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the ,2,,1 subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes. [source] BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000Pietro Baldelli Abstract Neurotrophins exert short- and long-term effects on synaptic transmission. The mechanism underlying these forms of synaptic plasticity is unknown although it is likely that intracellular Ca2+ and presynaptic Ca2+ channels play a critical role. Here we show that BDNF, NGF and NT-3 (10,100 ng/mL) exhibit a selective long-term up-regulation of voltage-gated Ca2+ current densities in developing hippocampal neurons of 6,20 days in culture. NGF and NT-3 appear more effective in up-regulating L-currents, while BDNF predominantly acts on non-L-currents (N, P/Q and R). The effects of the three neurotrophins were time- and dose-dependent. The EC50 was comparable for BDNF, NGF and NT-3 (10,16 ng/mL) while the time of half-maximal activation was significantly longer for NGF compared to BDNF (58 vs. 25 h). Despite the increased Ca2+ current density, the neurotrophins did not alter the voltage-dependence of channel activation, the kinetics parameters or the elementary properties of Ca2+ channels (single-channel conductance, probability of opening and mean open time). Neurotrophin effects were completely abolished by coincubation with the nonspecific Trk-receptor inhibitor K252a, the protein synthesis blocker anisomycin and the MAP-kinase inhibitor PD98059, while cotreatment with the PLC-, blocker, U73122, was without effect. Immunocytochemistry and Western blotting revealed that neurotrophins induced an increased MAP-kinase phosphorylation and its translocation to the nucleus. The present findings suggest that on a long time scale different neurotrophins can selectively up-regulate different Ca2+ channels. The action is mediated by Trk-receptors/MAP-kinase pathways and induces an increased density of newly available Ca2+ channels with unaltered gating activity. [source] Mechanisms of channel gating of the ligand-gated ion channel superfamily inferred from protein structureEXPERIMENTAL PHYSIOLOGY, Issue 2 2004Nathan L. Absalom The nicotinic-like ligand-gated ion channel superfamily consists of a group of structurally related receptors that activate an ion channel after the binding of extracellular ligand. The recent publications of the crystal structure of an acetylcholine binding protein and a refined electron micrograph structure of the membrane-bound segment of an acetylcholine receptor have led to insights into the molecular determinants of receptor function. Although the structures confirmed much biochemical and electrophysiological data obtained about the receptors, they also provide opportunities to study further the mechanisms that allow channel activation stimulated by ligand-binding. Here we review the mechanisms of channel gating that have been elucidated by information gained from the structures of the acetylcholine binding protein and membrane-bound segment of the acetylcholine receptor. [source] Functional Characterisation of the Volume-Sensitive Anion Channel in Rat Pancreatic ,-CellsEXPERIMENTAL PHYSIOLOGY, Issue 2 2001L. Best The whole-cell and perforated patch configurations of the patch-clamp technique were used to characterise the volume-sensitive anion channel in rat pancreatic ,-cells. The channel showed high permeability (P) relative to Cl, to extracellular monovalent organic anions (PSCN/PCll= 1.73, Pacetate/PCll= 0.39, Plactate/PCll= 0.38, Pacetoacetate/PCll= 0.32, Pglutamate/PCll= 0.28) but was less permeable to the divalent anion malate (Pmalate/PCll= 0.14). Channel activity was inhibited by a number of putative anion channel inhibitors, including extracellular ATP (10 mM), 1,9-dideoxyforskolin (100 ,M) and 4-OH tamoxifen (10 ,M). Inclusion of the catalytic subunit of protein kinase A in the pipette solution did not activate the volume-sensitive anion channel in non-swollen cells. Furthermore, addition of 8-bromoadenosine 3,,5,-cyclic monophosphate (8-BrcAMP) or forskolin failed to activate the channel in intact cells under perforated patch conditions. Addition of phorbol 12,13-dibutyrate (200 nM), either before or after cell swelling, also failed to affect channel activation. Our findings do not support the suggestion that the volume-sensitive anion channel in pancreatic ,-cells can be activated by protein kinase A. Furthermore, the ,-cell channel does not appear to be subject to regulation via protein kinase C. [source] BK channels in human glioma cells have enhanced calcium sensitivity,GLIA, Issue 4 2002Christopher B. Ransom Abstract We have previously demonstrated the expression of large-conductance, calcium-activated potassium (BK) channels in human glioma cells. In the present study, we characterized the calcium sensitivity of glioma BK channels in excised membrane patches. Channels in inside-out patches were activated at ,60 mV by 2.1 × 10,6 M cytosolic Ca2+, were highly K+ -selective, and had a slope conductance of ,210 pS. We characterized the Ca2+ sensitivity of these channels in detail by isolating BK currents in outside-out patches with different free [Ca2+]i. The half-maximal voltage for channel activation, V0.5, of glioma BK currents in outside-out patches was +138 mV with 0 Ca2+/10 EGTA. V0.5 was shifted to +81 mV and ,14 mV with free [Ca2+]i of 1.5 × 10,7 M and 2.1 × 10,6 M, respectively. These results suggest that glioma BK channels have a higher Ca2+ sensitivity than that described in many other human preparations. Data obtained from a cloned BK channel (hbr5) expressed in HEK cells support the conclusion that glioma BK channels have an unusually high sensitivity to calcium. In addition, the sensitivity of glioma BK channels to the BK inhibitor tetrandrine suggests the expression of BK channel auxiliary ,-subunits by glioma cells. Expression of the auxiliary ,-subunit of BK channels by glioma cells may relate to the high Ca2+ sensitivity of glioma BK channels. GLIA 38:281,291, 2002. © 2002 Wiley-Liss, Inc. [source] Mrp2 modulates the activity of chloride channels in isolated hepatocytesHEPATOLOGY, Issue 1 2002Xinhua Li Adenosine triphosphate binding cassette family transport proteins are important organic ion transporters in hepatocytes but these molecules may also exhibit other functions. In the present study we have measured the effects of substrates of the canalicular organic ion transporter multidrug resistance associated protein 2 (Mrp2) on chloride channel activation and cell volume regulation. We found that substrates such as leukotriene D4, 17-,-estradiol glucuronide, and the leukotriene inhibitor MK-571 accelerated the activation of chloride channels by cell swelling and activated chloride channels in cytokine-pretreated hepatocytes. Two conjugated estrogens that are not Mrp2 substrates did not produce this effect. Hepatocytes derived from a strain of transport-deficient rats (TR,), which lack Mrp2 expression, showed none of these substrate effects. Coincident with their ability to activate channels, the Mrp2 substrates increased the rate of volume regulatory decrease by approximately 50% (P < .01), confirming that enhanced channel activation under this condition stimulated volume regulation. In TR-hepatocytes the Mrp2 substrate had no effect on volume regulation. In conclusion, Mrp2 plays a role in regulation of chloride channel function by reducing the lag time necessary for channel activation and consequently accelerating the process of cell volume regulation. Substrates of Mrp2 affect the ability of the protein to interact with chloride channels. These findings represent an alternative function of Mrp2 in hepatocytes. [source] Blockade of HERG K+ channel by an antihistamine drug brompheniramine requires the channel binding within the S6 residue Y652 and F656JOURNAL OF APPLIED TOXICOLOGY, Issue 2 2008Sang-Joon Park Abstract A number of clinically used drugs block delayed rectifier K+ channels and prolong the duration of cardiac action potentials associated with long QT syndrome. This study investigated the molecular mechanisms of voltage-dependent inhibition of human ether- a-go-go -related gene (HERG) delayed rectifier K+ channels expressed in HEK-293 cells by brompheniramine, an antihistamine. Brompheniramine inhibited HERG current in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) value of 1.7 µm at 0 mV. A block of HERG current by brompheniramine was enhanced by progressive membrane depolarization and showed significantly negative shift in voltage-dependence of channel activation. Inhibition of HERG current by brompheniramine showed time-dependence. The S6 residue HERG mutant Y652A and F656C largely reduced the blocking potency of HERG current. These results indicate that brompheniramine mainly inhibited the HERG potassium channel through the residue Y652 and F656 and these residues may be an obligatory determinant in inhibition of HERG current for brompheniramine. Copyright © 2007 John Wiley & Sons, Ltd. [source] Regulatory Mechanisms and Physiological Relevance of a Voltage-Gated H+ Channel in Murine Osteoclasts: Phorbol Myristate Acetate Induces Cell Acidosis and the Channel Activation,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003Hiroyuki Mori Abstract The voltage-gated H+ channel is a powerful H+ extruding mechanism of osteoclasts, but its functional roles and regulatory mechanisms remain unclear. Electrophysiological recordings revealed that the H+ channel operated on activation of protein kinase C together with cell acidosis. Introduction: H+ is a key signaling ion in bone resorption. In addition to H+ pumps and exchangers, osteoclasts are equipped with H+ conductive pathways to compensate rapidly for pH imbalance. The H+ channel is distinct in its strong H+ extrusion ability and voltage-dependent gatings. Methods: To investigate how and when the H+ channel is available in functional osteoclasts, the effects of phorbol 12-myristate 13-acetate (PMA), an activator for protein kinase C, on the H+ channel were examined in murine osteoclasts generated in the presence of soluble RANKL (sRANKL) and macrophage-colony stimulating factor (M-CSF). Results and Conclusions: Whole cell recordings clearly showed that the H+ current was enhanced by increasing the pH gradient across the plasma membrane (,pH), indicating that the H+ channel changed its activity by sensing ,pH. The reversal potential (Vrev) was a valuable tool for the real-time monitoring of ,pH in clamped cells. In the permeabilized patch, PMA (10 nM-1.6 ,M) increased the current density and the activation rate, slowed decay of tail currents, and shifted the threshold toward more negative voltages. In addition, PMA caused a negative shift of Vrev, suggesting that intracellular acidification occurred. The PMA-induced cell acidosis was confirmed using a fluorescent pH indicator (BCECF), which recovered quickly in a K+ -rich alkaline solution, probably through the activated H+ channel. Both cell acidosis and activation of the H+ channel by PMA were inhibited by staurosporine. In ,80% of cells, the PMA-induced augmentation in the current activity remained after compensating for the ,pH changes, implying that both ,pH-dependent and -independent mechanisms mediated the channel activation. Activation of the H+ channel shifted the membrane potential toward Vrev. These data suggest that the H+ channel may contribute to regulation of the pH environments and the membrane potential in osteoclasts activated by protein kinase C. [source] Role of Protein Kinases in the Prolactin-Induced Intracellular Calcium Rise in Chinese Hamster Ovary Cells Expressing the Prolactin ReceptorJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2000B. Sorin Abstract There is still only limited understanding of the early steps of prolactin signal transduction in target cells. It has been shown that prolactin actions are associated with cell protein phosphorylation, Ca2+ increases, and so on. However, the link between the activation of kinases and calcium influx or intracellular Ca2+ mobilization has not yet been clearly established. Chinese hamster ovary (CHO) cells, stably transfected with the long form of rabbit mammary gland prolactin receptor (PRL-R) cDNA were used for PRL-R signal transduction studies. Spectrofluorimetric techniques were used to measure intracellular calcium ([Ca2+]i) in cell populations with Indo1 as a calcium fluorescent probe. We demonstrate that, although protein kinase C activation (PMA or DiC8) caused a calcium influx in CHO cells, prolactin-induced PKC activation was not responsible for the early effect of prolactin on [Ca2+]i. Activation of protein kinase A (PKA) or protein kinase G did not modify [Ca2+]i and inhibition of PKA pathway did not affect the prolactin response. In the same way, phosphatidylinositol-3 kinaseinhibition had no effect on the prolactin-induced Ca2+ increase. On the other hand, tyrosine kinase inhibitors (herbimycin A, lavendustin A, and genistein) completely blocked the effect of prolactin on [Ca2+]i (influx and release). W7, a calmodulin-antagonist, and a specific inhibitor of calmodulin kinases (KN-62), only blocked prolactin-induced Ca2+ influx but had no significant effect on Ca2+ release. Using pharmacological agents, we present new data concerning the involvement of protein phosphorylations in the early effects of prolactin on ionic channels in CHO cells expressing the long form of PRL-R. Our results suggest that, at least in the very early steps of prolactin signal transduction, serine-threonine phosphorylation does not participate in the prolactin-induced calcium increase. On the other hand, tyrosine phosphorylation is a crucial, very early step, since it controls K+ channel activation, calcium influx, and intracellular calcium mobilization. Calmodulin acts later, since its inhibition only blocks the prolactin-induced Ca2+ influx. [source] Antecedent Ethanol Attenuates Cerebral Ischemia/Reperfusion-Induced Leukocyte-Endothelial Adhesive Interactions and Delayed Neuronal Death: Role of Large Conductance, Ca2+ -activated K+ ChannelsMICROCIRCULATION, Issue 6 2010QUN WANG Please cite this paper as: Wang, Kalogeris, Wang, Jones and Korthuis (2010). Antecedent Ethanol Attenuates Cerebral Ischemia/Reperfusion-Induced Leukocyte-Endothelial Adhesive Interactions and Delayed Neuronal Death: Role of Large Conductance, Ca2+ -activated K+ Channels. Microcirculation17(6), 427,438. Abstract EtOH-PC reduces postischemic neuronal injury in response to cerebral (I/R). We examined the mechanism underlying this protective effect by determining (i) whether it was associated with a decrease in I/R-induced leukocyte-endothelial adhesive interactions in postcapillary venules, and (ii) whether the protective effects were mediated by activation of large conductance, calcium-activated potassium (BKCa) channels. Mice were administered ethanol by gavage or treated with the BKCa channel opener, NS1619, 24 hours prior to I/R with or without prior treatment with the BKCa channel blocker, PX. Both CCA were occluded for 20 minutes followed by two and three hours of reperfusion, and rolling (LR) and adherent (LA) leukocytes were quantified in pial venules using intravital microscopy. The extent of DND, apoptosis and glial activation in hippocampus were assessed four days after I/R. Compared with sham, I/R elicited increases in LR and LA in pial venules and DND and apoptosis as well as glial activation in the hippocampus. These effects were attenuated by EtOH-PC or antecedent NS1619 administration, and this protection was reversed by prior treatment with PX. Our results support a role for BKCa channel activation in the neuroprotective effects of EtOH-PC in cerebral I/R. [source] Hydrogen Peroxide-Dependent Arteriolar Dilation in Contracting Muscle of Rats Fed Normal and High Salt DietsMICROCIRCULATION, Issue 8 2007Paul J. Marvar ABSTRACT Objective: High dietary salt intake decreases the arteriolar dilation associated with skeletal muscle contraction. Because hydrogen peroxide (H2O2) can be released from contracting muscle fibers, this study was designed to assess the possible contribution of H2O2 to skeletal muscle functional hyperemia and its sensitivity to dietary salt. Methods: The authors investigated the effect of catalase treatment on arteriolar dilation and hyperemia in contracting spinotrapezius muscle of rats fed a normal salt (0.45%, NS) or high salt (4%, HS) diet for 4 weeks. Catalase-sensitive 2,,7,-dichlorofluorescein (DCF) fluorescence was measured as an index of H2O2 formation, and the mechanism of arteriolar dilation to H2O2 was probed in each group using pharmacological inhibitors. Results: DCF fluorescence increased with muscle contraction, but not if catalase was present. Catalase also reduced arteriolar dilation and hyperemia during contraction in both dietary groups. Exogenous H2O2 dilated arterioles in both groups, with greater responses in HS rats. Guanylate cyclase inhibition did not affect arteriolar responses to H2O2 in either group, but KCa or KATP channel inhibition equally reduced these responses, and KATP channel inhibition equally reduced functional hyperemia in both groups. Conclusions: These results indicate that locally produced H2O2 contributes to arteriolar dilation and hyperemia in contracting skeletal muscle, and that the effect of H2O2 on arteriolar tone in this vascular bed is mediated largely through K+ channel activation. High dietary salt intake does not reduce the contribution of H2O2 to active hyperemia, or alter the mechanism through which H2O2 relaxes arteriolar smooth muscle. [source] The gas that opens gates: calcium channel activation by ethyleneNEW PHYTOLOGIST, Issue 3 2007Anuphon Laohavisit First page of article [source] SYMPOSIUM REVIEW: Revealing the structural basis of action of hERG potassium channel activators and blockersTHE JOURNAL OF PHYSIOLOGY, Issue 17 2010Matthew Perry Human ether-á-go-go related gene (hERG) potassium (K+) channels play a critical role in cardiac action potential repolarization. This is due, in large part, to the unique gating properties of these channels, which are characterized by relatively slow activation and an unusually fast and voltage-dependent inactivation. A large number of structurally diverse compounds bind to hERG and carry an unacceptably high risk of causing arrhythmias. On the other hand, drugs that increase hERG current may, at least in principle, prove useful for treatment of long QT syndrome. A few blockers have been shown to increase hERG current at potentials close to the threshold for channel activation , a process referred to as facilitation. More recently, a novel group of hERG channel activators have been identified that slow deactivation and/or attenuate inactivation. Structural determinants for the action of two different types of activators have been identified. These compounds bind at sites that are distinct from each other and also separate from the binding site of high affinity blockers. They reveal not only novel ways of chemically manipulating hERG channel function, but also interactions between structural domains that are critical to normal activation and inactivation gating. [source] Apical SK potassium channels and Ca2+ -dependent anion secretion in endometrial epithelial cellsTHE JOURNAL OF PHYSIOLOGY, Issue 3 2008Melissa L. Palmer Apical uridine triphosphate (UTP) stimulation was shown to increase short circuit current (Isc) in immortalized porcine endometrial gland epithelial monolayers. Pretreatment with the bee venom toxin apamin enhanced this response. Voltage-clamp experiments using amphotericin B-permeablized monolayers revealed that the apamin-sensitive current increased immediately after UTP stimulation and was K+ dependent. The current,voltage relationship was slightly inwardly rectifying with a reversal potential of ,52 ± 2 mV, and the PK/PNa ratio was 14, indicating high selectivity for K+. Concentration,response relationships for apamin and dequalinium had IC50 values of 0.5 nm and 1.8 ,m, respectively, consistent with data previously reported for SK3 channels in excitable cells and hepatocytes. Treatment of monolayers with 50 ,m BAPTA-AM completely blocked the effects of UTP on K+ channel activation, indicating that the apamin-sensitive current was also Ca2+ dependent. Moreover, channel activation was blocked by calmidazolium (IC50= 5 ,m), suggesting a role for calmodulin in Ca2+ -dependent regulation of channel activity. RT-PCR experiments demonstrated expression of mRNA for the SK1 and SK3 channels, but not SK2 channels. Treatment of monolayers with 20 nm oestradiol-17, produced a 2-fold increase in SK3 mRNA, a 2-fold decrease in SK1 mRNA, but no change in GAPDH mRNA expression. This result correlated with a 2.5-fold increase in apamin-sensitive K+ channel activity in the apical membrane. We speculate that SK channels provide a mechanism for rapidly sensing changes in intracellular Ca2+ near the apical membrane, evoking immediate hyperpolarization necessary for increasing the driving force for anion efflux following P2Y receptor activation. [source] Functional role of cyclic nucleotide-gated channels in rat medial vestibular nucleus neuronsTHE JOURNAL OF PHYSIOLOGY, Issue 3 2008Maria Vittoria Podda Although cyclic nucleotide-gated (CNG) channels are expressed in numerous brain areas, little information is available on their functions in CNS neurons. The aim of the present study was to define the distribution of CNG channels in the rat medial vestibular nucleus (MVN) and their possible involvement in regulating MVN neuron (MVNn) excitability. The majority of MVNn expressed both CNG1 and CNG2 A subunits. In whole-cell current-clamp experiments carried out on brainstem slices containing the MVNn, the membrane-permeant analogues of cyclic nucleotides, 8-Br-cGMP and 8-Br-cAMP (1 mm), induced membrane depolarizations (8.9 ± 0.8 and 9.2 ± 1.0 mV, respectively) that were protein kinase independent. The cGMP-induced depolarization was associated with a significant decrease in the membrane input resistance. The effects of cGMP on membrane potential were almost completely abolished by the CNG channel blockers, Cd2+ and l - cis -diltiazem, but they were unaffected by blockade of hyperpolarization-activated cyclic nucleotide-gated channels. In voltage-clamp experiments, 8-Br-cGMP induced non-inactivating inward currents (,22.2 ± 3.9 pA) with an estimated reversal potential near 0 mV, which were markedly inhibited by reduction of extracellular Na+ and Ca2+ concentrations. Membrane depolarization induced by CNG channel activation increased the firing rate of MVNn without changing the action potential shape. Collectively, these findings provide novel evidence that CNG channels affect membrane potential and excitability of MVNn. Such action should have a significant impact on the function of these neurons in sensory,motor integration processes. More generally, it might represent a broad mechanism for regulating the excitability of different CNS neurons. [source] Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cellsTHE JOURNAL OF PHYSIOLOGY, Issue 2 2004Juan Shi We investigated, by using the patch clamp technique, Ca2+ -mediated regulation of heterologously expressed TRPC6 and TRPC7 proteins in HEK293 cells, two closely related homologues of the transient receptor potential (TRP) family and molecular candidates for native receptor-operated Ca2+ entry channels. With nystatin-perforated recording, the magnitude and time courses of activation and inactivation of carbachol (CCh; 100 ,m)-activated TRPC6 currents (ITRPC6) were enhanced and accelerated, respectively, by extracellular Ca2+ (Ca2o+) whether it was continuously present or applied after receptor stimulation. In contrast, Ca2o+ solely inhibited TRPC7 currents (ITRPC7). Vigorous buffering of intracellular Ca2+ (Ca2i+) under conventional whole-cell clamp abolished the slow potentiating (i.e. accelerated activation) and inactivating effects of Ca2o+, disclosing fast potentiation (EC50: ,0.4 mm) and inhibition (IC50: ,4 mm) of ITRPC6 and fast inhibition (IC50: ,0.4 mm) of ITRPC7. This inhibition of ITRPC6 and ITRPC7 seems to be associated with voltage-dependent reductions of unitary conductance and open probability at the single channel level, whereas the potentiation of ITRPC6 showed little voltage dependence and was mimicked by Sr2+ but not Ba2+. The activation process of ITRPC6 or its acceleration by Ca2o+ probably involves phosphorylation by calmodulin (CaM)-dependent kinase II (CaMKII), as pretreatment with calmidazolium (3 ,m), coexpression of Ca2+ -insesentive mutant CaM, and intracellular perfusion of the non-hydrolysable ATP analogue AMP-PNP and a CaMKII-specific inhibitory peptide all effectively prevented channel activation. However, this was not observed for TRPC7. Instead, single CCh-activated TRPC7 channel activity was concentration-dependently suppressed by nanomolar Ca2i+ via CaM and conversely enhanced by IP3. In addition, the inactivation time course of ITRPC6 was significantly retarded by pharmacological inhibition of protein kinase C (PKC). These results collectively suggest that TRPC6 and 7 channels are multiply regulated by Ca2+ from both sides of the membrane through differential Ca2+,CaM-dependent and -independent mechanisms. [source] High cortical spreading depression susceptibility and migraine-associated symptoms in Cav2.1 S218L miceANNALS OF NEUROLOGY, Issue 1 2010Arn M. J. M. van den Maagdenberg PhD Objective The CACNA1A gene encodes the pore-forming subunit of neuronal CaV2.1 Ca2+ channels. In patients, the S218L CACNA1A mutation causes a dramatic hemiplegic migraine syndrome that is associated with ataxia, seizures, and severe, sometimes fatal, brain edema often triggered by only a mild head trauma. Methods We introduced the S218L mutation into the mouse Cacna1a gene and studied the mechanisms for the S218L syndrome by analyzing the phenotypic, molecular, and electrophysiological consequences. Results Cacna1aS218L mice faithfully mimic the associated clinical features of the human S218L syndrome. S218L neurons exhibit a gene dosage,dependent negative shift in voltage dependence of CaV2.1 channel activation, resulting in enhanced neurotransmitter release at the neuromuscular junction. Cacna1aS218L mice also display an exquisite sensitivity to cortical spreading depression (CSD), with a vastly reduced triggering threshold, an increased propagation velocity, and frequently multiple CSD events after a single stimulus. In contrast, mice bearing the R192Q CACNA1A mutation, which in humans causes a milder form of hemiplegic migraine, typically exhibit only a single CSD event after one triggering stimulus. Interpretation The particularly low CSD threshold and the strong tendency to respond with multiple CSD events make the S218L cortex highly vulnerable to weak stimuli and may provide a mechanistic basis for the dramatic phenotype seen in S218L mice and patients. Thus, the S218L mouse model may prove a valuable tool to further elucidate mechanisms underlying migraine, seizures, ataxia, and trauma-triggered cerebral edema. ANN NEUROL 2010;67:85,98 [source] Heat opens axon initial segment sodium channels: A febrile seizure mechanism?,ANNALS OF NEUROLOGY, Issue 2 2009Evan A. Thomas PhD Objective A number of hypotheses have been put forward as to why humans respond to fever by seizing. The current leading hypotheses are that respiratory alkalosis produces an as yet unidentified change in neural excitability or that inflammatory mediators potentiate excitatory synaptic transmission. However, it is well known that ion channel gating rates increase with increased temperature. Furthermore, skeletal and cardiac sodium channel activation can be temperature sensitive in some situations. We measured the temperature sensitivity of the brain sodium channel, NaV1.2, to determine whether febrile temperatures might produce a direct increase in neuronal excitability. Methods The effect of temperature on NaV1.2 electrophysiological properties was measured in a transfected mammalian cell line. The subcellular location of NaV1.2 in the mouse brain was ascertained using antibodies against NaV1.2 and ankyrin-G. Computer simulation of a hippocampal granule cell model was used to predict the effect of temperature on action potential firing. Results As well as the expected increase in gating rates, the voltage dependence of activation became 7.6mV more negative when the temperature was increased from 37°C to 41°C. NaV1.2 was localized to the axon initial segment in hippocampal and cortical neurons. Computer simulation showed that increased gating rates and the more negative activation dramatically increase neuronal excitability. Interpretation The direct effect of heat on ion channels localized to the site of action potential initiation potentially causes a profound increase in neuronal excitability. This is likely to contribute to febrile seizure genesis. Ann Neurol 2009;66:219,226 [source] Sporadic onset of erythermalgia: A gain-of-function mutation in Nav1.7ANNALS OF NEUROLOGY, Issue 3 2006Chongyang Han BS Objective Inherited erythermalgia (erythromelalgia) is an autosomal dominant disorder in which patients experience severe burning pain in the extremities, in response to mild thermal stimuli and exercise. Although mutations in sodium channel Nav1.7 have been shown to underlie erythermalgia in several multigeneration families with the disease that have been investigated to date, the molecular basis of erythermalgia in sporadic cases is enigmatic. We investigated the role of Nav1.7 in a sporadic case of erythermalgia in a Chinese family. Methods Genomic DNA from patients and their asymptomatic family members were sequenced to identify mutations in Nav1.7. Whole-cell patch clamp analysis was used to characterize biophysical properties of wild-type and mutant Nav1.7 channels in mammalian cells. Results A single amino acid substitution in the DIIS4-S5 linker of Nav1.7 was present in two children whose parents were asymptomatic. The asymptomatic father was genetically mosaic for the mutation. This mutation produces a hyperpolarizing shift in channel activation and an increase in amplitude of the response to slow, small depolarizations. Interpretation Founder mutations in Nav1.7, which can confer hyperexcitability on peripheral sensory neurons, can underlie sporadic erythermalgia. Ann Neurol 2006 [source] Antimuscarinic antibodies in primary Sjögren's syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cellsARTHRITIS & RHEUMATISM, Issue 4 2006L. J. Dawson Objective Sjögren's syndrome (SS) is an autoimmune condition affecting salivary glands, for which a clearly defined pathogenic autoantibody has yet to be identified. Autoantibodies that bind to the muscarinic M3 receptors (M3R), which regulate fluid secretion in salivary glands, have been proposed in this context. However, there are no previous data that directly show antisecretory activity. This study was undertaken to investigate and characterize the antisecretory activity of anti-M3R. Methods Microfluorimetric Ca2+ imaging and patch clamp electrophysiologic techniques were used to measure the secretagogue-evoked increase in [Ca2+]i and consequent activation of Ca2+ -dependent ion channels in individual mouse and human submandibular acinar cells. Together, these techniques form a sensitive bioassay that was used to determine whether IgG isolated from patients with primary SS and from control subjects has antisecretory activity. Results IgG (2 mg/ml) from patients with primary SS reduced the carbachol-evoked increase in [Ca2+]i in both mouse and human acinar cells by ,50%. IgG from control subjects had no effect on the Ca2+ signal. Furthermore, the inhibitory action of primary SS patient IgG on the Ca2+ signal was acutely reversible. We repeated our observations using rabbit serum containing antibodies raised against the second extracellular loop of M3R and found an identical pattern of acutely reversible inhibition. Anti-M3R,positive serum had no effect on Ca2+ -dependent ion channel activation evoked by the direct intracellular infusion of inositol 1,4,5-triphosphate. Conclusion These observations show for the first time that IgG from patients with primary SS contains autoantibodies capable of damaging saliva production and contributing to xerostomia. The unusual but not unprecedented acute reversibility of the effects of anti-M3 autoantibodies is the subject of further research. [source] Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociceptionBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2010S Bang BACKGROUND AND PURPOSE Temperature-sensitive transient receptor potential ion channels (thermoTRPs) expressed in primary sensory neurons and skin keratinocytes play a crucial role as peripheral pain detectors. Many natural and synthetic ligands have been found to act on thermoTRPs, but little is known about endogenous compounds that inhibit these TRPs. Here, we asked whether resolvin D1 (RvD1), a naturally occurring anti-inflammatory and pro-resolving lipid molecule is able to affect the TRP channel activation. EXPERIMENTAL APPROACH We examined the effect of RvD1 on the six thermoTRPs using Ca2+ imaging and whole cell electrophysiology experiments using the HEK cell heterologous expression system, cultured sensory neurons and HaCaT keratinocytes. We also checked changes in agonist-specific acute licking/flicking or flinching behaviours and TRP-related mechanical and thermal pain behaviours using Hargreaves, Randall-Selitto and von Frey assay systems with or without inflammation. KEY RESULTS RvD1 inhibited the activities of TRPA1, TRPV3 and TRPV4 at nanomolar and micromolar levels. Consistent attenuations in agonist-specific acute pain behaviours by immediate peripheral administration with RvD1 were also observed. Furthermore, local pretreatment with RvD1 significantly reversed mechanical and thermal hypersensitivity in inflamed tissues. CONCLUSIONS AND IMPLICATIONS RvD1 was a novel endogenous inhibitor for several sensory TRPs. The results of our behavioural studies suggest that RvD1 has an analgesic potential via these TRP-related mechanisms. [source] Inhalational anaesthetics and n -alcohols share a site of action in the neuronal Shaw2 Kv channelBRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2010Aditya Bhattacharji Background and purpose:, Neuronal ion channels are key targets of general anaesthetics and alcohol, and binding of these drugs to pre-existing and relatively specific sites is thought to alter channel gating. However, the underlying molecular mechanisms of this action are still poorly understood. Here, we investigated the neuronal Shaw2 voltage-gated K+ (Kv) channel to ask whether the inhalational anaesthetic halothane and n -alcohols share a binding site near the activation gate of the channel. Experimental approach:, Focusing on activation gate mutations that affect channel modulation by n -alcohols, we investigated n -alcohol-sensitive and n -alcohol-resistant Kv channels heterologously expressed in Xenopus oocytes to probe the functional modulation by externally applied halothane using two-electrode voltage clamping and a gas-tight perfusion system. Key results:, Shaw2 Kv channels are reversibly inhibited by halothane in a dose-dependent and saturable manner (K0.5= 400 µM; nH= 1.2). Also, discrete mutations in the channel's S4S5 linker are sufficient to reduce or confer inhibition by halothane (Shaw2-T330L and Kv3.4-G371I/T378A respectively). Furthermore, a point mutation in the S6 segment of Shaw2 (P410A) converted the halothane-induced inhibition into halothane-induced potentiation. Lastly, the inhibition resulting from the co-application of n -butanol and halothane is consistent with the presence of overlapping binding sites for these drugs and weak binding cooperativity. Conclusions and implications:, These observations strongly support a molecular model of a general anaesthetic binding site in the Shaw2 Kv channel. This site may involve the amphiphilic interface between the S4S5 linker and the S6 segment, which plays a pivotal role in Kv channel activation. [source] Nociceptin/orphanin FQ inhibits capsaicin-induced guinea-pig airway contraction through an inward-rectifier potassium channelBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2002Yanlin Jia Nociceptin/orphanin FQ (N/OFQ), an endogenous opioid-like orphan receptor (NOP receptor, previously termed ORL1 receptor) agonist, has been found to inhibit capsaicin-induced bronchoconstriction in isolated guinea-pig lungs and in vivo. The underlying mechanisms are not clear. In the present studies, we tested the effect of N/OFQ on VR1 channel function in isolated guinea-pig nodose ganglia cells. Capsaicin increased intracellular Ca2+ concentration in these cells through activation of vanilloid receptors. Capsaicin-induced Ca2+ responses were attenuated by pretreatment of nodose neurons with N/OFQ (1 ,M). N/OFQ inhibitory effect on the Ca2+ response in nodose ganglia cells was antagonized by tertiapin (0.5 ,M), an inhibitor of inward-rectifier K+ channels, but not by verapamil, a voltage gated Ca2+ channel blocker, indicating that an inward-rectifier K+ channel is involved in N/OFQ inhibitory effect. In isolated guinea-pig bronchus, N/OFQ (1 ,M) inhibited capsaicin-induced airway contraction. Tertiapin (0.5 ,M) abolished the N/OFQ inhibition of capsaicin-induced bronchial contraction. Capsaicin (10 ,g) increased pulmonary inflation pressure in the isolated perfused guinea-pig lungs. This response was significantly attenuated by pretreatment with N/OFQ (1 ,M). Tertiapin also abolished the N/OFQ inhibitory effect on capsaicin-induced bronchoconstriction in perfused lungs. Capsaicin increased the release of substance P and neurokinin A from isolated lungs. N/OFQ (1 ,M) blocked the capsaicin-induced tachykinin release. These results indicate that N/OFQ-induced hyperpolarization of tachykinin containing airway sensory nerves, through an inward-rectifier K+ channel activation, accounts for the inhibition of capsaicin-evoked broncoconstriction. British Journal of Pharmacology (2002) 135, 764,770; doi:10.1038/sj.bjp.0704515 [source] Characterization of KCNQ5/Q3 potassium channels expressed in mammalian cellsBRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2001Alan D Wickenden Heteromeric KCNQ5/Q3 channels were stably expressed in Chinese Hamster ovary cells and characterized using the whole cell voltage-clamp technique. KCNQ5/Q3 channels were activated by the novel anticonvulsant, retigabine (EC50 1.4 ,M) by a mechanism that involved drug-induced, leftward shifts in the voltage-dependence of channel activation (,31.8 mV by 30 ,M retigabine). KCNQ5/Q3 channels were inhibited by linopirdine (IC50 7.7 ,M) and barium (IC50 0.46 mM), at concentrations similar to those required to inhibit native M-currents. These findings identify KCNQ5/Q3 channels as a molecular target for retigabine and raise the possibility that activation of KCNQ5/Q3 channels may be responsible for some of the anti-convulsant activity of this agent. Furthermore, the sensitivity of KCNQ5/Q3 channels to linopirdine supports the possibility that potassium channels comprised of KCNQ5 and KCNQ3 may make a contribution to native M-currents. British Journal of Pharmacology (2001) 132, 381,384; doi:10.1038/sj.bjp.0703861 [source] Antagonist effect of flufenamic acid on TRPM2 cation channels activated by hydrogen peroxideCELL BIOCHEMISTRY AND FUNCTION, Issue 4 2007Mustafa Naz Abstract The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca2+ -permeable cation channel that is activated by hydrogen peroxide (H2O2) as a consequence of oxidative stress although the channel activation by H2O2 appears to represent a cell-specific process in cells with endogenous expression of TRPM2. Flufenamic acid (FA) is a non-steroidal anti-inflammatory compound. Whether H2O2 activates or FA inhibits TRPM2 channels in Chinese hamster ovary (CHO) cell is currently unknown. Due to lack of known antogonists of this channel, we demonstrate in CHO cells that FA inhibits TRPM2 activated by extracellular H2O2. CHO cells were transfected with cDNA coding for TRPM2. Cells were studied with the conventional whole-cell patch clamp technique. The intracellular solution used EDTA (10,mM) as chelator for Ca2+ and heavy metal ions. H2O2 (10,mM) and FA (0.1,mM) were applied extracellularly. Non-selective cation currents were consistently induced by H2O2. The time cause of H2O2 effects was characterized by a delay of 2,5,min and a slow current induction to reach a plateau. The H2O2 - induced inward current was effectively inhibited by 0.1,mM FA applied extracellularly. In conclusion, we have demonstrated that FA is an effective antogonist of TRPM2 channels and H2O2activated currents in CHO cells. FA in CHO cells may be considered, at best, a starting point for the development of TRPM2 channel blockers. Copyright © 2006 John Wiley & Sons, Ltd. [source] |