Chair Conformer (chair + conformer)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Synthesis and conformational study of P -heterocyclic androst-5-ene derivatives

HETEROATOM CHEMISTRY, Issue 1 2008
Éva Frank
The reactions of (20R)-3,-acetoxy-21-hydroxymethylpregn-5-en-20-ol (2) and (20R)-3,-acetoxypregn-5-ene-20,21-diol (11) with phenylphosphonic dichloride 3 and aryl dichlorophosphates 4,6 afforded novel types of P -heterocyclic androst-5-ene derivatives 7,10 and 12 as epimeric pairs. The diastereomers were separated by column chromatography and were characterized by NMR spectroscopy. Estimation of the stereostructures of the corresponding epimers by B3LYP/631G(d) DFT ab initio calculations suggested that the six-membered hetero ring in compounds 7b and 8a,10a adopts predominantly a chair conformation, with the P -substituents in their preferred orientation. The cyclic phosphonate moiety in 7a or 8b,10b, however, seems to exist as an equilibrium mixture of chair,distorted- boat or chair,chair forms. The theoretical calculations indicate that the conformational equilibrium is shifted toward the distorted- boat conformer for 7a, with a pseudoequatorial P -phenyl substituent, whereas for 8b,10b the chair conformer with an equatorial P -phenoxy group predominates. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:7,14, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20372 [source]


Relative energies of conformations and sulfinyl oxygen-induced pentacoordination at silicon in 4-bromo- and 4,4-dibromo-4-silathiacyclohexane 1-oxide: A computational study

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4 2005
Fillmore Freeman
Abstract The equilibrium geometries and relative energies of the chair, twist, and boat conformations of cis - and trans -4-bromo-4-silathiacyclohexane 1-oxide and 4,4-dibromo-4-silathiacyclohexane 1-oxide have been calculated at the B3LYP/6-311G(d,p) and MP2/6-311+G(d,p) theoretical levels. The axial (SO) chair conformers of the sulfoxides are of lower energy than the chair conformers of the corresponding equatorial (SO) sulfoxides. The chair conformer of the axial (SO) trans -4-bromo-4-silathiacyclohexane 1-oxide is only 0.10 kcal/mol more stable than the corresponding 1,4-boat conformer which is stabilized by a transannular coordination of the sulfinyl oxygen with silicon that results in trigonal bipyramidal geometry at silicon. The 1,4-boat structure of equatorial (SO) trans -4-bromo-4-silathiacyclohexane 1-oxide is a transition state and is 5.77 kcal/mol higher in energy than the respective chair conformer. The 1,4-boat conformer of axial (SO) 4,4-dibromo-4-silathiacyclohexane 1-oxide is also stabilized by transannular coordination of the sulfinyl oxygen and silicon, but it is 4.31 kcal/mol higher in energy than the corresponding chair conformer. The relatively lower stability of the 1,4-boat conformer of 4,4-dibromo-4-silathiacyclohexane 1-oxide may be due to repulsive interactions of the axial halogen and sulfinyl oxygen atom. The relative energies of the conformers and transition states are discussed in terms of hyperconjugative interactions, orbital interactions, nonbonded interactions, and transannular sulfinyl oxygen-silicon coordination. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


A computational study of conformational interconversions in 1,4-dithiacyclohexane (1,4-dithiane)

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 8 2003
Fillmore Freeman
Abstract Ab initio molecular orbital theory with the 6-31G(d), 6-31G(d,p), 6-31+G(d), 6-31+G(d,p), 6-31+G(2d,p), 6-311G(d), 6-311G(d,p), and 6-311+G(2d,p) basis sets and density functional theory (BLYP, B3LYP, B3P86, B3PW91) have been used to locate transition states involved in the conformational interconversions of 1,4-dithiacyclohexane (1,4-dithiane) and to calculate the geometry optimized structures, relative energies, enthalpies, entropies, and free energies of the chair and twist conformers. In the chair and 1,4-twist conformers the CHax and CHeq bond lengths are equal at each carbon, which suggest an absence of stereoelectronic hyperconjugative interactions involving carbon,hydrogen bonds. The 1,4-boat transition state structure was 9.53 to 10.5 kcal/mol higher in energy than the chair conformer and 4.75 to 5.82 kcal/mol higher in energy than the 1,4-twist conformer. Intrinsic reaction coordinate (IRC) calculations showed that the 1,4-boat transition state structure was the energy maximum in the interconversion of the enantiomers of the 1,4-twist conformer. The energy difference between the chair conformer and the 1,4-twist conformer was 4.85 kcal/mol and the chair-1,4-twist free energy difference (,G°c-t) was 4.93 kcal/mol at 298.15 K. Intrinsic reaction coordinate (IRC) calculations connected the transition state between the chair conformer and the 1,4-twist conformer. This transition state is 11.7 kcal/mol higher in energy than the chair conformer. The effects of basis sets on the 1,4-dithiane calculations and the relative energies of saturated and unsaturated six-membered dithianes and dioxanes are also discussed. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 909,919, 2003 [source]


Computational study of the chair,chair interconversion and stereoelectronic interactions in 1,2,3-trithiacyclo-hexane (1,2,3-trithiane)

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 1 2004
Fillmore Freeman
Abstract Ab initio theory, density functional theory (DFT) and Møller,Plesset perturbation theory (MP2) with the 6,31G(d), 6,31++G(d), 6,31G(d,p), 6,31+G(d,p), 6,31++G(d,p), 6,311G(d,p) and 6,311+G(d,p) basis sets were used to study stereoelectronic hyperconjugative interactions and the mechanism of the chair,chair conformational interconversion in 1,2,3-trithiacyclohexane (1,2,3-trithiane). The relative energies, enthalpies, entropies, free energies and structural parameters of the chair, 1,4-twist and 2,5-twist conformers, a distorted 1,4-boat transition state and a 2,5-boat transition state were calculated. The HF calculated energy difference (,E) between the chair conformer of 1,2,3-trithiane and the distorted 1,4-boat transition state was 10.59,kcal,mol,1 (1 kcal=4.184,kJ). The 1,4-twist conformer and the 2,5-boat transition state are close in energy, as are the 2,5-twist conformer and the distorted 1,4-boat transition state. B3LYP/6,311+G(d,p) calculated the chair conformer of 1,2,3-trithiane to be 5.83, 10.09, and 5.96,kcal,mol,1, respectively, lower in energy than the 1,4-twist conformer, 2,5-twist conformer and 2,5-boat transition state. Intrinsic reaction coordinate (IRC) calculations were used to connect the transition state between the chair conformer and the 1,4-twist conformer. B3LYP/6,31+G(d,p) and B3LYP/6,311+G(d,p) calculated this transition state to be 14.25,kcal,mol,1 higher in energy than the chair conformer. In the chair conformer, the respective C4,H and C6,H bond lengths are equal, but the C5,Heq bond is longer than the C5,Hax bond. In the 1,4-twist conformer, the C4,Hiso bond lengths are equal, the C5,H,eq bond is longer than the C5,H,ax bond and the C6,H bond lengths are equal. In the 2,5-twist conformer, equal C,H bond lengths are found at C4 and at C5, but the C6,H,eq bond is longer than the C6,H,ax bond. Copyright © 2003 John Wiley & Sons, Ltd. Additional material for this paper is available in Wiley Intersciene [source]


Absolute structures and conformations of the spongian diterpenes spongia-13(16),14-dien-3-one, epispongiadiol and spongiadiol

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 4 2009
Ken W. L. Yong
The absolute configurations of spongia-13(16),14-dien-3-one [systematic name: (3bR,5aR,9aR,9bR)-3b,6,6,9a-tetramethyl-4,5,5a,6,8,9,9a,9b,10,11-decahydrophenanthro[1,2- c]furan-7(3bH)-one], C20H28O2, (I), epispongiadiol [systematic name: (3bR,5aR,6S,7R,9aR,9bR)-7-hydroxy-6-hydroxymethyl-3b,6,9a-trimethyl-3b,5,5a,6,7,9,9a,9b,10,11-decahydrophenanthro[1,2- c]furan-8(4H)-one], C20H28O4, (II), and spongiadiol [systematic name: (3bR,5aR,6S,7S,9aR,9bR)-7-hydroxy-6-hydroxymethyl-3b,6,9a-trimethyl-3b,5,5a,6,7,9,9a,9b,10,11-decahydrophenanthro[1,2- c]furan-8(4H)-one], C20H28O4, (III), were assigned by analysis of anomalous dispersion data collected at 130,K with Cu K, radiation. Compounds (II) and (III) are epimers. The equatorial 3-hydroxyl group on the cyclohexanone ring (A) of (II) is syn with respect to the 4-hydroxymethyl group, leading to a chair conformation. In contrast, isomer (III), where the 3-hydroxyl group is anti to the 4-hydroxymethyl group, is conformationally disordered between a major chair conformer where the OH group is axial and a minor boat conformer where it is equatorial. In compound (I), a carbonyl group is present at position 3 and ring A adopts a distorted-boat conformation. [source]


Determination of the absolute configuration of bicyclo[3.3.1]nonane-2,7-dione by circular dichroism spectroscopy and chemical correlation

CHIRALITY, Issue 10 2001
Eugenius Butkus
Abstract A study of the enantiomers of bicyclo[3.3.1]nonane-2,7-dione, a chiral molecule containing two carbonyl chromophores, was performed. Enantiomers of this structure were obtained by HPLC resolution and the (+)-(1R,5S)-enantiomer by enantiospecific synthesis from(+)-(1S,5S)-bicyclo[3.3.1]nonane-2,6-dione. The title structure is an interesting molecule to demonstrate the validity of the octant rule. The location of the major chair,chair conformer into octants placing each chromophore into the origin of the octants led to the opposite configuration assignments. In order to prove unequivocally absolute configuration, enantiospecific synthesis of the title compound was carried out. The kinetic resolution of racemic bicyclo[3.3.1]nonane-2,6-dione using baker's yeast afforded (+)-(1S,5S)-2,6-dione. Employing a reaction sequence analogous to one developed earlier by us with racemic substrates led to carbonyl group shift giving enantiomerically pure (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione. The absolute configuration of the investigated compound was established by combined use of the octant rule and chemical correlation. Chirality 13:694,698, 2001. © 2001 Wiley-Liss, Inc. [source]


Relative energies of conformations and sulfinyl oxygen-induced pentacoordination at silicon in 4-bromo- and 4,4-dibromo-4-silathiacyclohexane 1-oxide: A computational study

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4 2005
Fillmore Freeman
Abstract The equilibrium geometries and relative energies of the chair, twist, and boat conformations of cis - and trans -4-bromo-4-silathiacyclohexane 1-oxide and 4,4-dibromo-4-silathiacyclohexane 1-oxide have been calculated at the B3LYP/6-311G(d,p) and MP2/6-311+G(d,p) theoretical levels. The axial (SO) chair conformers of the sulfoxides are of lower energy than the chair conformers of the corresponding equatorial (SO) sulfoxides. The chair conformer of the axial (SO) trans -4-bromo-4-silathiacyclohexane 1-oxide is only 0.10 kcal/mol more stable than the corresponding 1,4-boat conformer which is stabilized by a transannular coordination of the sulfinyl oxygen with silicon that results in trigonal bipyramidal geometry at silicon. The 1,4-boat structure of equatorial (SO) trans -4-bromo-4-silathiacyclohexane 1-oxide is a transition state and is 5.77 kcal/mol higher in energy than the respective chair conformer. The 1,4-boat conformer of axial (SO) 4,4-dibromo-4-silathiacyclohexane 1-oxide is also stabilized by transannular coordination of the sulfinyl oxygen and silicon, but it is 4.31 kcal/mol higher in energy than the corresponding chair conformer. The relatively lower stability of the 1,4-boat conformer of 4,4-dibromo-4-silathiacyclohexane 1-oxide may be due to repulsive interactions of the axial halogen and sulfinyl oxygen atom. The relative energies of the conformers and transition states are discussed in terms of hyperconjugative interactions, orbital interactions, nonbonded interactions, and transannular sulfinyl oxygen-silicon coordination. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]