Home About us Contact | |||
Acyl Hydrolase (acyl + hydrolase)
Selected AbstractsPurification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425JOURNAL OF BASIC MICROBIOLOGY, Issue 6 2003Rita Bhardwaj The present investigation was carried out for increasing the yield of tannase of Aspergillus niger and the physico-chemical characterization of this enzyme. Homogenization and detergent pretreatments did not have any remarkable effect on the extraction of enzyme protein. However, extraction of fungal pigments and proteins was observed to have high pH dependence, and maximum enzyme extraction was obtained at pH 5.5. The two-step purification protocol gave 51-fold purified enzyme with a yield of 20%. The total tannase activity was made up of nearly equal activity of esterase and depsidase. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of purified tannase protein indicated it to be made up of two polypeptides of molecular weight 102 and 83 kDa. Based on the Michaelis-Menten constant (Km) of tannase for three substrates tested, tannic acid was the best substrate with Km of 2.8 × 10,4M, followed by methyl gallate and propyl gallate. The inhibition was maximum for CaCl2 (58%) whereas EDTA had no modulatory effect on tannase activity. The inhibitor binding constant (KI) of CaCl2 was 5.9 × 10,4M and the inhibition was of noncompetitive type. [source] Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leavesPHYSIOLOGIA PLANTARUM, Issue 1 2008Ana Rita Matos Patatin-like genes have recently been cloned from several plant species and found to be involved in stress responses and development. In previous work, we have shown that a patatin-like gene encoding a galactolipid acyl hydrolase (EC 3.1.1.26) was stimulated by drought in the leaves of the tropical legume, Vigna unguiculata L. Walp. The aim of the present work was to study the expression of patatin-like genes in Arabidopsis thaliana under water deficit. Expression of six genes was studied by reverse transcriptase polymerase chain reaction in leaves of plants submitted to progressive drought stress induced by withholding water and also in different plant organs. Three genes, designated AtPAT IIA, AtPAT IVC and AtPAT IIIA, were shown to be upregulated by water deficit but with different kinetics, while the other patatin-like genes were either constitutive or not expressed in leaves. The accumulation of transcripts of AtPAT IIA in the early stages of the drought treatment was coordinated with the upregulation of lipoxygenase and allene oxide synthase genes. AtPAT IIA expression was also induced by wounding and methyl jasmonate treatments. The in vitro lipolytic activity toward monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidylcholine and phosphatidylglycerol was confirmed by producing the recombinant protein ATPAT IIA in insect cells. The analysis of free fatty acid pools in drought-stressed leaves shows an increase in the relative amounts of trans-3-hexadecenoic acid at the beginning of the treatment followed by a progressive accumulation of linoleic and linolenic acids. The possible roles of AtPAT IIA in lipid signaling and membrane degradation under water deficit are discussed. [source] Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acidTHE PLANT JOURNAL, Issue 5 2002Sandrine Dhondt Summary We have previously isolated three tobacco genes (NtPat) encoding patatin-like proteins, getting rapidly induced during the hypersensitive response (HR) to tobacco mosaic virus, in advance to jasmonate accumulation. NtPAT enzymes are lipid acyl hydrolases that display high phospholipase A2 (PLA2) activity and may mobilize fatty acid precursors of oxylipins. Here, we performed a detailed study of NtPat gene regulation under various biotic and abiotic stresses. PLA2 activity was poorly induced in response to drought, wounding, reactive oxygen intermediates, salicylic acid (SA) or methyl-jasmonate (MJ) whereas the ethylene (ET) precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), provoked a moderate induction. In contrast, PLA2 activity was strongly induced when ACC was combined with MJ, and in response to the bacterium Erwinia carotovora or to the fungus Botrytis cinerea, as well as to treatment with ,-megaspermin, a cell death-inducing protein elicitor. A simplified system based on the infiltration of ,-megaspermin into leaves was used to dissect the spatio-temporal activation of PLA2 activity with regards to the accumulation of jasmonates and to the influence of endogenous SA. NtPat -encoded PLA2 activity was rapidly induced in the infiltrated zone before the appearance of cell death and with some delay in the surrounding living cells. A massive accumulation of 12-oxo-phytodienoic and jasmonic acids occurred in the elicitor-infiltrated zone, but only low levels were detectable outside this area. A similar picture was found in SA-deficient plants, showing that in tobacco, accumulation of jasmonates is not affected by the concomitant HR-induced build-up of endogenous SA. Finally, ET-insensitive plants showed a weakened induction of PLA2 activity outside the elicitor-infiltrated tissue. [source] |