| |||
Acrylic Acid Monomer (acrylic + acid_monomer)
Selected AbstractsThe preparation and properties of dextrin-graft-acrylic acid/montmorillonite superabsorbent nanocompositePOLYMER COMPOSITES, Issue 7 2009Xin Ding A novel superabsorbent nanocomposite was synthesized through intercalation polymerization of partially neutralized acrylic acid, gelatinized dextrin, and an organic-montmorillonite powder using N,N -methylenebisacrylamide as a crosslinker, Span-60 as a dispersant, and ammonium persulfate together with sodiumsulfite as a type of mixed redox initiator. Effects of the amount of them on water absorbency of the superabsorbent were investigated. The structure and the morphology of the nanocomposite were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy analysis. The blood compatibility of the composite was primarily measured. The results show that the acrylic acid monomer was successfully intercalated into the organic-montmorillonite layers and bonded with them. The superabsorbent nanocomposite synthesized under optimal conditions with an organic-montmorillonite powder content of 5 wt% exhibit an absorption of 725.3 g/g in distilled water and favorable blood compatibility. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Performance evaluation of synthesized acrylic acid grafted polypropylene within CaCO3/polypropylene compositesPOLYMER COMPOSITES, Issue 2 2000F. Rahma A polymeric coupling agent acrylic acid grafted polypropylene (AAgPP) was synthesized and its efficiency in CaCO3/PP composite was investigated. The grafting of acrylic acid monomer (AA) onto polypropylene was performed using an internal mixer. The effect of peroxyde, acrylic acid monomer content, temperature and RPM was studied. A grafting reaction between the polypropylene and the acrylic acid was evidenced through FTIR, UV, DSC and MFI testing. The highest grafting yield was obtained at 0.85 phr peroxide and 5 phr acrylic acid. The selected mixing temperature was 200°C, the rotor speed 150 rpm and the residence time 5 min. The obtained coupling agent (AAgPP) was used with 30 wt% CaCO3 filled polypropylene. Strong interactions with the composite were observed. The effect of increasing the coupling agent content on Izod impact and tensile properties was investigated. A maximum in the above properties is attained at 15 wt% AAgPP. The most important effect is clearly shown in the Izod test. In fact, a threefold increase has been observed for either notched and untoched specimen. The 15 wt% AAgPP is considered to be a critical concentration for the composite considered. This corresonds to maximum interactions occurring between the matrix and the filler. SEM analysis clearly shows strong interactions between the filler and the matrix in the presence of acrylic acid grafted polypropylene. This is another proof of the efficiency of the synthesized AAgPP as a potential coupling agent for CaCO3 filled PP. [source] Interpenetrating polymeric network hydrogels for potential gastrointestinal drug releasePOLYMER INTERNATIONAL, Issue 11 2007Sema Ekici Abstract New interpenetrating polymeric network (IPN) hydrogels based on chitosan (C), poly(N -vinyl pyrrolidone) (PVP) and poly(acrylic acid) (PAAc), crosslinked with glutaraldehyde (G) and N,N,-methylenebisacrylamide (MBA), were prepared and investigated for potential gastrointestinal drug delivery vehicles utilizing a model drug, amoxicillin. IPN hydrogels were synthesized by simultaneous polymerization/crosslinking of acrylic acid monomer in the presence of another polymer (C) and crosslinker (G, MBA). Three different concentrations of glutaraldehyde were used (0.5, 1.0 and 2.0 w/w) to control the overall porosity of the hydrogels, named C-P-AAc/0.5, C-P-AAc/1.0 and C-P-AAc/2.0, respectively. Spectroscopic and thermal analyses such as Fourier transform infrared spectroscopy, thermogravimetric analysis and thermomechanical analysis were performed for IPN characterization. Equilibrium swelling studies were conducted for pH and temperature response behavior. Swelling studies were also carried out in simulated gastric fluid of pH = 1.1 and simulated intestinal fluid of pH = 7.4 to investigate possible site-specific drug delivery. It was found that the release behavior of the drug from these IPN hydrogels was dependent on the pH of the medium and the proportion of crosslinker in the IPN. It was observed that amoxicillin release at pH = 7.4 was higher than at pH = 1.1. The analysis of the drug release showed that amoxicillin was released from these hydrogels through a non-Fickian diffusion mechanism. Copyright © 2007 Society of Chemical Industry [source] Flow-Through Assay of Quinine Using Solid Contact Potentiometric Sensors Based on Molecularly Imprinted PolymersELECTROANALYSIS, Issue 24 2009Ayman Abstract Miniaturized potentiometric membrane sensors for quinine incorporated with molecular imprinted polymer (MIP) were synthesized and implemented. Planar PVC based polymeric membrane sensors containing quinine-methacrylic and/or acrylic acid-ethylene glycol methacrylate were dispensed into anisotropically etched wells on polyimide wafers. The determination of quinine was carried out in acidic solution at pH,6, where positively charged species predominated prevalently. The suggested miniaturized planner sensors exhibited marked selectivity, sensitivity, long-term stability and reproducibility. At their optimum conditions, the sensors displayed wide concentration ranges of 4.0×10,6,1.0×10,2mol L,1 and 1.0×10,5,1.0×10,2 mol L,1 with slopes of about 61.3,55.7,mV decade,1; respectively. Sensors exhibit detection limits of 1.2×10,6 and 8.2×10,6 mol L,1 upon the use of methacrylic and acrylic acid monomers in the imprinted polymer, respectively. Validation of the assay method according to the quality assurance standards (range, within-day repeatability, between-day variability, standard deviation, accuracy, and good performance characteristics) which could assure good reliable novel sensors for quinine estimation was justified. Application of the proposed flow-through assay method for routine determination of quinine in soft drinks was assayed and the results compared favorably with data obtained by the standard fluorimetric method. [source] Frontal Polymerization Synthesis of Starch-Grafted Hydrogels: Effect of Temperature and Tube Size on Propagating Front and Properties of HydrogelsCHEMISTRY - A EUROPEAN JOURNAL, Issue 12 2006Qing-Zhi Yan Prof. Dr. Abstract The frontal polymerization process was used to produce superabsorbent hydrogels based on acrylic acid monomers grafted onto starch. Using a simple test tube which was nonadiabatic and permitted contact with air, the effects of initial temperature and tube size on the propagating front of grafting copolymerization and the properties of hydrogels were explored. The unrestricted access of the reaction mixture to oxygen delayed the formation of self-propagating polymerization front. The ignition time was markedly lengthened with the increasing of tube size attributed to the formation of large amounts of peroxy radicals. The front velocity dependence on initial temperature could be fit to an Arrhenius function with the average apparent activation energy of 24 kJ,mol,1, and on tube size to a function of higher order. The increase of the initial temperature increased the front temperature, which lead to more soluble oligomers and higher degree of crosslinking. The interplay of two opposite effects of oligomer and crosslinking determined the sol and gel content. An increase in tube size had two effects on the propagating front. One was to reduce heat loss. The other effect was to increase the number of escaping gas bubbles. The combined action of the two effects resulted in a maximum value of front temperature, an increase in sol content and a reduction in gel content with tube size. The highest swelling capacity of hydrogels was obtained when the initial temperature or tube size favored a formation of porous microstructure of hydrogels. [source] |