Acoustic Environment (acoustic + environment)

Distribution by Scientific Domains


Selected Abstracts


Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009
Torsten Rahne
Abstract The auditory scene is dynamic, changing from 1 min to the next as sound sources enter and leave our space. How does the brain resolve the problem of maintaining neural representations of the distinct yet changing sound sources? We used an auditory streaming paradigm to test the dynamics of multiple sound source representation, when switching between integrated and segregated sound streams. The mismatch negativity (MMN) component of event-related potentials was used as index of change detection to observe stimulus-driven modulation of the ongoing sound organization. Probe tones were presented randomly within ambiguously organized sound sequences to reveal whether the neurophysiological representation of the sounds was integrated (no MMN) or segregated (MMN). The pattern of results demonstrated context-dependent responses to a single tone that was modulated in dynamic fashion as the auditory environment rapidly changed from integrated to segregated sounds. This suggests a rapid form of auditory plasticity in which the longer-term sound context influences the current state of neural activity when it is ambiguous. These results demonstrate stimulus-driven modulation of neural activity that accommodates to the dynamically changing acoustic environment. [source]


Spectro-temporal sound density-dependent long-term adaptation in cat primary auditory cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
Boris Gourévitch
Abstract Sensory systems use adaptive strategies to code for the changing environment on different time scales. Short-term adaptation (up to 100 ms) reflects mostly synaptic suppression mechanisms after response to a stimulus. Long-term adaptation (up to a few seconds) is reflected in the habituation of neuronal responses to constant stimuli. Very long-term adaptation (several weeks) can lead to plastic changes in the cortex, most often facilitated during early development, by stimulus relevance or by behavioral states such as attention. In this study, we show that long-term adaptation with a time course of tens of minutes is detectable in anesthetized adult cat auditory cortex after a few minutes of listening to random-frequency tone pips. After the initial post-onset suppression, a slow recovery of the neuronal response strength to tones at or near their best frequency was observed for low-rate random sounds (four pips per octave per second) during stimulation. The firing rate at the end of stimulation (15 min) reached levels close to that observed during the initial onset response. The effect, visible for both spikes and, to a smaller extent, local field potentials, decreased with increasing spectro-temporal density of the sound. The spectro-temporal density of sound may therefore be of particular relevance in cortical processing. Our findings suggest that low stimulus rates may produce a specific acoustic environment that shapes the primary auditory cortex through very different processing than for spectro-temporally more dense and complex sounds. [source]


SONG VARIATION IN AN AVIAN RING SPECIES

EVOLUTION, Issue 3 2000
Darren E. Irwin
Abstract., Divergence of mating signals can occur rapidly and be of prime importance in causing reproductive isolation and speciation. A ring species, in which two reproductively isolated taxa are connected by a chain of intergrading populations, provides a rare opportunity to use spatial variation to reconstruct the history of divergence. I use geographic variation in the song of a likely ring species, the greenish warbler (Phylloscopus trochiloides) to reconstruct the microevolutionary steps that occurred during divergence of a trait that is often important in speciation in birds. Populations of a western Siberian (P. t. viridanus) and an eastern Siberian (P. t. plumbeitarsus) form of the greenish warbler meet, but do not interbreed in central Siberia; these forms are connected by a chain of interbreeding populations extending in a ring to the south around the treeless Tibetan Plateau. I show that: (1) song structure differs greatly between the two Siberian forms, which share the same habitat; (2) song structure changes gradually around the ring; (3) singing behavior is relatively simple in the Himalayas, but becomes increasingly complex to the north, both to the west and east of the Tibetan Plateau; and (4) song varies along independent axes of complexity in the western and eastern south-north clines. By comparing geographic variation in singing behavior and ecological variables, I distinguish among possible causes of song divergence, including selection based on the acoustic environment, stochastic effects of sexual selection, and selection for species recognition. I suggest that parallel south-to-north ecological gradients have caused a greater intensity of sexual selection on song in northern populations and that the stochastic effects of sexual selection have led to divergence in song structure. [source]


Is the failure to detect stimulus deviance during sleep due to a rapid fading of sensory memory or a degradation of stimulus encoding?

JOURNAL OF SLEEP RESEARCH, Issue 2 2005
MERAV SABRI
Summary The mismatch negativity (MMN) is thought to reflect the outcome of a system responsible for the detection of change in an otherwise repetitive, homogenous acoustic environment. This process depends on the storage and maintenance of a sensory representation of the frequently presented stimulus to which the deviant stimulus is compared. Few studies have been able to record the MMN in non-rapid eye movement (NREM) sleep. This pattern of results might be explained by either a rapid fading of sensory memory or an inhibition of stimulus input prior to entry into the cortical MMN generator site. The present study used a very rapid rate of presentation in an attempt to capture mismatch-related negativity prior to the fading of sensory memory. Auditory event-related potentials were recorded from 12 subjects during a single sleep period. A 1000 Hz standard stimulus was presented every 150 ms. At random, on 6.6% of the trials, the standard was changed to either a large 2000 Hz or a small 1100 Hz deviant. In wakefulness, the large deviant elicited an extended negativity that was reduced in amplitude following the presentation of the small deviant. This negativity was also apparent during REM sleep following the presentation of the large deviant. These deviant-related negativities (DRNs) were probably a composite of N1 and MMN activity. During NREM sleep (stage 2 and slow-wave sleep), only the large deviant continued to elicit a DRN. However this DRN might be overlapped by the initial activity of a component that is unique to sleep, the N350. There was little evidence of the DRN or the MMN during sleep following the presentation of the small deviant. A rapid rate of presentation, therefore, does not preserve the MMN following small deviance within sleep. It is possible that inhibition of sensory input occurs before entry into the MMN generating system in the temporal cortex. [source]


Performance of Four Ceramic-Matrix Composite Divergent Flap Inserts Following Ground Testing on an F110 Turbofan Engine

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2000
James M. Staehler
Four ceramic-matrix composite flap inserts were evaluated following ground testing on a General Electric F110 turbofan engine. Three of the composites accumulated ,117 h of engine time. The fourth composite, a NextelTM 720 material with aluminosilicate matrix, accumulated ,40 h. Large through-thickness cracks developed along the longitudinal edges of a NicalonÔ/Al2O3 insert and the Nextel 720/aluminosilicate insert. The cracks developed because of high tensile stresses caused by the steep in-plane thermal gradients induced across the flap width during afterburner lights. The Nextel 720/aluminosilicate insert also exhibited severe surface wear associated with the acoustic environment and contact with the adjacent divergent seals. Neither a Nicalon/silicon nitrocarbide insert nor a Nicalon/C insert exhibited significant signs of distress. [source]


Anatomic Geometry of Sound Transmission and Reception in Cuvier's Beaked Whale (Ziphius cavirostris)

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2008
Ted W. Cranford
Abstract This study uses remote imaging technology to quantify, compare, and contrast the cephalic anatomy between a neonate female and a young adult male Cuvier's beaked whale. Primary results reveal details of anatomic geometry with implications for acoustic function and diving. Specifically, we describe the juxtaposition of the large pterygoid sinuses, a fibrous venous plexus, and a lipid-rich pathway that connects the acoustic environment to the bony ear complex. We surmise that the large pterygoid air sinuses are essential adaptations for maintaining acoustic isolation and auditory acuity of the ears at depth. In the adult male, an acoustic waveguide lined with pachyosteosclerotic bones is apparently part of a novel transmission pathway for outgoing biosonar signals. Substitution of dense tissue boundaries where we normally find air sacs in delphinoids appears to be a recurring theme in deep-diving beaked whales and sperm whales. The anatomic configuration of the adult male Ziphius forehead resembles an upside-down sperm whale nose and may be its functional equivalent, but the homologous relationships between forehead structures are equivocal. Anat Rec, 291:353,378, 2008. © 2008 Wiley-Liss, Inc. [source]