| |||
Acid Sequence Identity (acid + sequence_identity)
Kinds of Acid Sequence Identity Selected AbstractsProtein disulfide isomerase family proteins involved in soybean protein biogenesisFEBS JOURNAL, Issue 3 2007Hiroyuki Wadahama Protein disulfide isomerase family proteins are known to play important roles in the folding of nascent polypeptides and the formation of disulfide bonds in the endoplasmic reticulum. In this study, we cloned two similar protein disulfide isomerase family genes from soybean leaf (Glycine max L. Merrill cv. Jack) mRNA by RT-PCR using forward and reverse primers designed from the expressed sequence tag clone sequences. The cDNA encodes a protein of either 364 or 362 amino acids, named GmPDIS-1 or GmPDIS-2, respectively. The nucleotide and amino acid sequence identities of GmPDIS-1 and GmPDIS-2 were 68% and 74%, respectively. Both proteins lack the C-terminal, endoplasmic reticulum-retrieval signal, KDEL. Recombinant proteins of both GmPDIS-1 and GmPDIS-2 were expressed in Escherichia coli as soluble folded proteins that showed both an oxidative refolding activity of denatured ribonuclease A and a chaperone activity. Their domain structures were identified as containing two thioredoxin-like domains, a and a,, and an ERp29c domain by peptide mapping with either trypsin or V8 protease. In cotyledon cells, both proteins were shown to distribute to the endoplasmic reticulum and protein storage vacuoles by confocal microscopy. Data from coimmunoprecipitation and crosslinking experiments suggested that GmPDIS-1 associates with proglycinin, a precursor of the seed storage protein glycinin, in the cotyledon. Levels of GmPDIS-1, but not of GmPDIS-2, were increased in cotyledons, where glycinin accumulates during seed development. GmPDIS-1, but not GmPDIS-2, was induced under endoplasmic reticulum-stress conditions. [source] Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein (ADRP)JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 4 2005T.H. Kim Summary ADRP plays an important role in regulating lipid storage in various cells. We investigated the ADRP gene as a candidate gene for intramuscular fat deposition and marbling traits in pigs. A full-length transcript of porcine ADRP was cloned by RT-PCR and RACE. The porcine ADRP cDNA (1848 bp) contains a 1377-bp open reading frame, encoding a deduced protein of 459 amino acids, which has amino acid sequence identities of 89, 89, 82 and 81% with cattle, human, mouse and rat ADRP genes respectively. The genomic structure and sequence of the porcine ADRP were also analysed using a BAC clone of a Korean native pig. Pig ADRP comprises eight exons spanning approximately 13 kb and is located on chromosome 1 q2.3-q2.7 between microsatellite markers SW2185 and SW974. Several sequence variations were detected from nine different pig breeds. The biological role of this gene and the mapping localization indicated that the porcine ADRP is a possible candidate gene for fat deposition and marbling traits. [source] Diversity of staphylocoagulase and identification of novel variants of staphylocoagulase gene in Staphylococcus aureusMICROBIOLOGY AND IMMUNOLOGY, Issue 7 2008Marie Kinoshita ABSTRACT Staphylocoagulase (SC) is a major phenotypic determinant of Staphylococcus aureus. Serotype of SC (coagulase type) is used as an epidemiological marker and 10 types (I,X) have been discriminated so far. To clarify genetic diversity of SC within a single and among different serotype(s), we determined approximately 1500 bp-nucleotide sequences of SC gene encoding D1, D2, and central regions (N-terminal half and central regions of SC; SCNC) for a total of 33 S. aureus strains comprising two to three strains from individual coagulase types (I,VIII, X) and 10 strains which were not determined as previously known SC serotypes (ND-strains). Amino acid sequence identities of SCNC among strains with a single coagulase type of II, III, IV, V, VI and X were extremely high (more than 99%), whereas lower identity (56,87%) was observed among different types. In contrast, within a single coagulase type of I, VII, or VIII, sequence divergence was found (lowest identity; 82%). SCNC sequences from the ND-strains were discriminated into two genetic groups with an identity of 71% to each other (tentatively assigned to genotypes [XI] and [XII]), and exhibited less than 86% sequence identities to those of most known coagulase types. All the types [XI] and [XII] strains were methicillin susceptible and belonged to different sequence types from those of coagulase types I,X strains reported so far by multilocus sequence typing. These findings indicated genetic heterogeneity of SC in coagulase types I, VII, and VIII strains, and the presence of two novel SC genotypes related to antigenicity of SC serotypes. [source] In silico protein design by combinatorial assembly of protein building blocksPROTEIN SCIENCE, Issue 10 2004Hui-Hsu (Gavin) Tsai Abstract Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share ,20% and ,25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology. [source] Novel type III polyketide synthases from Aloe arborescensFEBS JOURNAL, Issue 8 2009Yuusuke Mizuuchi Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85,96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 °C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. [source] Identification of RNase HII from psychrotrophic bacterium, Shewanella sp.FEBS JOURNAL, Issue 10 2006SIB1 as a high-activity type RNase H The gene encoding RNase HII from the psychrotrophic bacterium, Shewanella sp. SIB1 was cloned, overexpressed in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RNase HII is a monomeric protein with 212 amino acid residues and shows an amino acid sequence identity of 64% to E. coli RNase HII. The enzymatic properties of SIB1 RNase HII, such as metal ion preference, pH optimum, and cleavage mode of substrate, were similar to those of E. coli RNase HII. SIB1 RNase HII was less stable than E. coli RNase HII, but the difference was marginal. The half-lives of SIB1 and E. coli RNases HII at 30 °C were ,,30 and 45 min, respectively. The midpoint of the urea denaturation curve and optimum temperature of SIB1 RNase HII were lower than those of E. coli RNase HII by ,,0.2 m and ,,5 °C, respectively. However, SIB1 RNase HII was much more active than E. coli RNase HII at all temperatures studied. The specific activity of SIB1 RNase HII at 30 °C was 20 times that of E. coli RNase HII. Because SIB1 RNase HII was also much more active than SIB1 RNase HI, RNases HI and HII represent low- and high-activity type RNases H, respectively, in SIB1. In contrast, RNases HI and HII represent high- and low-activity type RNases H, respectively, in E. coli. We propose that bacterial cells usually contain low- and high-activity type RNases H, but these types are not correlated with RNase H families. [source] Retention of the duplicated cellular retinoic acid-binding protein 1 genes (crabp1a and crabp1b) in the zebrafish genome by subfunctionalization of tissue-specific expressionFEBS JOURNAL, Issue 14 2005Rong-Zong Liu The cellular retinoic acid-binding protein type I (CRABPI) is encoded by a single gene in mammals. We have characterized two crabp1 genes in zebrafish, designated crabp1a and crabp1b. These two crabp1 genes share the same gene structure as the mammalian CRABP1 genes and encode proteins that show the highest amino acid sequence identity to mammalian CRABPIs. The zebrafish crabp1a and crabp1b were assigned to linkage groups 25 and 7, respectively. Both linkage groups show conserved syntenies to a segment of the human chromosome 15 harboring the CRABP1 locus. Phylogenetic analysis suggests that the zebrafish crabp1a and crabp1b are orthologs of the mammalian CRABP1 genes that likely arose from a teleost fish lineage-specific genome duplication. Embryonic whole mount in situ hybridization detected zebrafish crabp1b transcripts in the posterior hindbrain and spinal cord from early stages of embryogenesis. crabp1a mRNA was detected in the forebrain and midbrain at later developmental stages. In adult zebrafish, crabp1a mRNA was localized to the optic tectum, whereas crabp1b mRNA was detected in several tissues by RT-PCR but not by tissue section in situ hybridization. The differential and complementary expression patterns of the zebrafish crabp1a and crabp1b genes imply that subfunctionalization may be the mechanism for the retention of both crabp1 duplicated genes in the zebrafish genome. [source] Structural and functional comparison of 15S - and 15R -specific cyclooxygenases from the coral Plexaura homomallaFEBS JOURNAL, Issue 17 2004Karin Valmsen It has been known for 30 years that the gorgonian coral Plexaura homomalla contains either 15S- or 15R -configuration prostaglandins (PGs), depending on its location in the Caribbean. Recently we showed that the 15R -PGs in the R -variety of P. homomalla are formed by a unique cyclooxygenase (COX) with 15R oxygenation specificity [Valmsen, K., Järving, I., Boeglin, W.E., Varvas, K., Koljak, R., Pehk, T., Brash, A.R. & Samel, N. (2001) Proc. Natl. Acad. Sci. USA98, 7700]. Here we describe the cloning and characterization of a closely related COX protein (97% amino acid sequence identity) from the S -variety of P. homomalla. Functional expression of the S -variant COX cDNA in Sf9 insect cells followed by incubation with exogenous arachidonic acid resulted in formation of PG products with > 98% 15S -configuration. Mutational analysis was performed on a suggested active site determinant of C-15 oxygenation specificity, position 349 (Val in all S -specific COX, Ile in 15R -COX). The 15S -COX Val349 to Ile mutant formed 35% 15R- PGs, while the reverse mutation in the 15R -COX (Ile349Val) led to formation of 70% 15S- products. This establishes position 349 as an important determinant of the product stereochemistry at C-15. Our characterization of the enzyme variants demonstrates that very minor sequence divergence accounts for the content of epimeric PGs in the two variants of P. homomalla and that the differences do not arise by isomerization of the products. [source] Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp.FEBS JOURNAL, Issue 7 2004SIB1 in cold-adaptation A psychrotrophic bacterium Shewanella sp. strain SIB1 was grown at 4 and 20 °C, and total soluble proteins extracted from the cells were analyzed by two-dimensional polyacrylamide gel electrophoresis. Comparison of these patterns showed that the cellular content of a protein with a molecular mass of 28 kDa and an isoelectric point of four greatly increased at 4 °C compared to that at 20 °C. Determination of the N-terminal amino acid sequence, followed by the cloning and sequencing of the gene encoding this protein, revealed that this protein is a member of the FKBP family of proteins with an amino acid sequence identity of 56% to Escherichia coli FKBP22. This protein was overproduced in E. coli in a His-tagged form, purified, and analyzed for peptidyl-prolyl cis-trans isomerase activity. When this activity was determined by the protease coupling assay using N -succinyl-Ala-Leu-Pro-Phe- p -nitroanilide as a substrate at various temperatures, the protein exhibited the highest activity at 10 °C with a kcat/Km value of 0.87 µm,1·s,1. When the peptidyl-prolyl cis-trans isomerase activity was determined by the RNase T1 refolding assay at 10 and 20 °C, the protein exhibited higher activity at 10 °C with a kcat/Km value of 0.50 µm,1·s,1. These kcat/Km values are lower but comparable to those of E. coli FKBP22. We propose that a FKBP family protein is involved in cold-adaptation of psychrotrophic bacteria. [source] Liraglutide: can it make a difference in the treatment of type 2 diabetes?INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 2010J. Unger Summary Despite advances in the management of type 2 diabetes, glycaemic control remains suboptimal for many patients because of the complexities of disease progression and the need to balance improved glycaemic control against adverse treatment effects, particularly weight gain and hypoglycaemia. Thus, the development of new antidiabetes therapies continues in earnest. Incretin hormones have been the recent focus of research, as they account for up to 70% of the insulin response following a meal. There is also a high concordance between the physiological actions of one hormone, glucagon-like peptide-1 (GLP-1), and the therapeutic needs of patients. As native human GLP-1 has a half life of only approximately 2 min, researchers have developed molecules that act as GLP-1 receptor agonists or inhibit the enzyme responsible for GLP-1 degradation (dipeptidyl peptidase-4). Liraglutide, a human GLP-1 analogue sharing 97% of its amino acid sequence identity with native GLP-1, has been approved for use as monotherapy (not in Europe) and in combination with selected oral agents. In this supplement, we summarise key liraglutide data, offer practical insight into what we might expect of liraglutide in clinical use and examine selected case studies. For reasons of the safety and efficacy of GLP-1 receptor agonists, many thought leaders believe that these will become background therapy for majority of patients in the coming years. This supplement will serve as a resource from which readers can extract information concerning the potential benefits for patients who are overweight, losing pancreatic beta-cell function and drifting towards the ravaging effects of chronic hyperglycaemia. [source] Molecular cloning and characterization of alpha-class glutathione S -transferase gene from the liver of silver carp, bighead carp, and other major chinese freshwater fishesJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2006Wan-Qin Liao Abstract Two full-length cDNAs encoding glutathione S -transferase (GST) were cloned and sequenced from the hepatopancreas of planktivorous silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). The silver carp and bighead carp GST cDNA were 920 and 978 bp in length, respectively, and both contained an open reading frame that encoding 223 amino acids. Partial GST cDNA sequences were also obtained from the liver of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius auratu), mud carp (Cirrhinus molitorella), and tilapia (Oreochromis nilotica). All these GSTs could be classified as alpha-class GSTs on the basis of their amino acid sequence identity with other species. The three-dimensional structure of the silver carp GST was predicted using a computer program, and was found to fit the classical two-domain GST structure. Using the genome walker method, a 875-bp 5,-flanking region of the silver carp GST gene was obtained, and several lipopolysaccharide (LPS) response elements were identified in the promoter region of the phytoplanktivorous fish GST gene, indicating that the GST gene expression of this fish might be regulated by LPS, released from the toxic blue-green algae producing microcystins. To compare the constitutive expression level of the liver GST gene among the six freshwater fishes with completely different tolerance to microcystins, beta-actin was used as control and the ratio GST/beta-actin mRNA (%) was determined as 130.7 ± 6.6 (grass carp), 103.1 ± 8.9 (bighead carp), 92.6 ± 15.0 (crucian carp), 72.3 ± 7.8 (mud carp), 58.8 ± 11.5 (silver carp), and 33.6 ± 13.7 (tilapia). The constitutive expression level of the liver GST gene clearly shows that all the six freshwater fishes had a negative relationship with their tolerance to microcystins: high-resistant fishes (phytoplanktivorous silver carp and tilapia) had the lowest tolerance to microcystins and the high-sensitive fish (herbivorous grass carp) had the highest tolerance to microcystins. Taken together with the reciprocal relationship of constitutive and inducible liver GST expression level in some of the tested fish species to microcystin exposure, a molecular mechanism for different microcystin detoxification abilities of the warm freshwater fishes was discussed. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:114,126, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20125 [source] Molecular Characterization of a Strain of Squash Leaf Curl China Virus from the PhilippinesJOURNAL OF PHYTOPATHOLOGY, Issue 10 2003T. Kon Abstract The complete nucleotide sequence of infectious cloned DNA components (A and B) of the causal agent of squash leaf curl disease in the Philippines was determined. DNA-A and DNA-B comprise 2739 and 2705 nucleotides, respectively; the common region is 174 bases in length. Five ORFs were found in DNA-A and two in DNA-B. Partial dimeric clones containing DNA-A and DNA-B, constructed in a binary vector and transformed into Agrobacterium tumefaciens, induced systemic infection in agro-inoculated pumpkin plants (Cucurbita moschata). The total DNA-A sequence was most closely related to that of Squash leaf curl China virus (SLCCNV) (88% identity), although the existence of B component of SLCCNV has not been reported. The deduced coat protein was like that of SLCCNV (98% amino acid sequence identity) and the Philippines virus has low sequence identity to Squash leaf curl virus (SLCV) and Squash mild leaf curl virus (SMLCV) (63 and 64% total nucleotide sequence identities, respectively). From these results, we propose that the Philippines virus be designated Squash leaf curl China virus -[Philippines] (SLCCNV-[PH]). [source] Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexateMOLECULAR MICROBIOLOGY, Issue 6 2006Alice Dawson Summary The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 Å resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the ,6-,6 loop and ,6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis. [source] Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulonMOLECULAR MICROBIOLOGY, Issue 4 2005Kevin L. Griffith Summary In Escherichia coli, SoxS, MarA and Rob form a closely related subset of the AraC/XylS family of positive regulators, sharing ,42% amino acid sequence identity over the length of SoxS and the ability to activate transcription of a common set of target genes that provide resistance to redox-cycling compounds and antibiotics. On the basis of its ,43% amino acid sequence identity with SoxS, MarA and Rob, TetD, encoded by transposon Tn10, appears to be a fourth member of the subset. However, although its expression has been shown to be negatively regulated by TetC and not inducible by tetracycline, the physiological function of TetD is unknown. Accordingly, in the work presented here, we initiate a molecular characterization of TetD. We show that expression of TetD activates transcription of a subset of the SoxS/MarA/Rob regulon genes and confers resistance to redox-cycling compounds and antibiotics. We show that mutations in the putative TetD binding site of a TetD-activatable promoter and a mutation in the protein's N-terminal DNA recognition helix interfere with transcription activation, thereby indicating that TetD directly activates target gene transcription. Finally, we show that TetD, like SoxS and MarA, is intrinsically unstable; however, unlike SoxS and MarA, TetD is not degraded by Lon or any of the cell's known cytoplasmic ATP-dependent proteases. Thus, we conclude that TetD is a bona fide member of the SoxS/MarA/Rob subfamily of positive regulators. [source] Docking and homology modeling explain inhibition of the human vesicular glutamate transportersPROTEIN SCIENCE, Issue 9 2007Jonas Almqvist Abstract As membrane transporter proteins, VGLUT1,3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1,3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data. [source] |