| |||
Acid Sequence (acid + sequence)
Kinds of Acid Sequence Terms modified by Acid Sequence Selected AbstractsGenome Scanning Tests for Comparing Amino Acid Sequences Between GroupsBIOMETRICS, Issue 1 2008Peter B. Gilbert Summary Consider a placebo-controlled preventive HIV vaccine efficacy trial. An HIV amino acid sequence is measured from each volunteer who acquires HIV, and these sequences are aligned together with the reference HIV sequence represented in the vaccine. We develop genome scanning methods to identify positions at which the amino acids in infected vaccine recipient sequences either (A) are more divergent from the reference amino acid than the amino acids in infected placebo recipient sequences or (B) have a different frequency distribution than the placebo sequences, irrespective of a reference amino acid. We consider t -test-type statistics for problem A and Euclidean, Mahalanobis, and Kullback,Leibler-type statistics for problem B. The test statistics incorporate weights to reflect biological information contained in different amino acid positions and mismatches. Position-specific p -values are obtained by approximating the null distribution of the statistics either by a permutation procedure or by a nonparametric estimation. A permutation method is used to estimate a cut-off p -value to control the per comparison error rate at a prespecified level. The methods are examined in simulations and are applied to two HIV examples. The methods for problem B address the general problem of comparing discrete frequency distributions between groups in a high-dimensional data setting. [source] A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid SequencesCHEMBIOCHEM, Issue 12 2010Yulia V. Gerasimova Dr. Abstract Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. [source] The actin gene family: Function follows isoform,CYTOSKELETON, Issue 10 2010Benjamin J. Perrin Although actin is often thought of as a single protein, in mammals it actually consists of six different isoforms encoded by separate genes. Each isoform is remarkably similar to every other isoform, with only slight variations in amino acid sequence. Nevertheless, recent work indicates that actin isoforms carry out unique cellular functions. Here, we review evidence drawn from localization studies, mouse models, and biochemical characterization to suggest a model for how in vivo mixing of actin isoforms may influence cytoskeletal function in cells. © 2010 Wiley-Liss, Inc. [source] An actin-stabilizing peptide conjugate deduced from the major outer sheath protein of the bacterium Treponema denticolaCYTOSKELETON, Issue 9 2007Mohsen Amin Abstract A synthetic peptide conjugated to bovine serum albumin, P34BSA, based on a 10-mer in the deduced amino acid sequence of the major outer sheath protein of Treponema denticola, was found to stabilize actin filaments of fibroblasts. Pretreatment of cells with P34BSA inhibited the actin disruption induced by cytochalasin D and latrunculin B. P34BSA was taken up by the cells and localized among actin filaments. P34BSA bound actin from fibroblast lysates, and cell exposure to P34BSA led to the activation of RhoA, a key regulator of actin filament assembly in fibroblasts. Exposure of fibroblasts to P34BSA retarded their migration on a collagen substratum. P34BSA also inhibited chemotaxis of murine neutrophils. Our findings with a novel peptide conjugate imply that bacterial proteins known to perturb the cytoskeleton represent a rich source of molecular models upon which to design synthetic reagents for modulating actin-dependent cellular functions. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source] Myosin light chain kinase colocalizes with nonmuscle myosin IIB in myofibril precursors and sarcomeric Z-lines of cardiomyocytesCYTOSKELETON, Issue 7 2006T. V. Dudnakova Abstract Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility involving actin and myosin II. MLCK is widely present in vertebrate tissues including the myocardium. However, the role of MLCK in cardiomyocyte function is not known. Previous attempts to gain insight into possible roles and identify potential molecular partners were disappointing and equivocal due to cross reactivity of early antibodies with striated muscle MLCK, which has a different genetic locus and a divergent amino acid sequence from the abovementioned enzyme. Using an immunofluorescence approach and a panel of antibodies directed against MLCK, cytoskeletal, and sarcomeric proteins, we localized MLCK to myofibril precursors and Z-lines of sarcomeres in embryonic and adult cardiomyocytes. The same structures contained nonmuscle myosin IIB implicating this protein as a possible target of MLCK. Our results suggest a role for MLCK in cardiomyocyte differentiation and contraction through regulation of nonmuscle myosin IIB. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source] Insulin analogues: an example of applied medical scienceDIABETES OBESITY & METABOLISM, Issue 1 2009B. Sheldon Insulin analogues were developed to try and achieve more physiological insulin replacement from injection in the subcutaneous site. Their pharmacokinetics and pharmacodynamics differ from human insulin when injected subcutaneously because of alterations in the amino acid sequence of the insulin molecule. The rapid-acting insulin analogues, lispro, aspart and glulisine, have a rapid onset of action and shorter duration of action because of changes to the B26,30 portion of insulin inhibiting formation of dimers and hexamers. They appear to improve postprandial glucose, incidence of hypoglycaemia and patient satisfaction and, when used in combination with basal insulin analogues, improve glycosylated haemoglobin in comparison to conventional insulin therapy. Additionally, they have been successfully used in children, pregnant women, in pump therapy and as part of premixed biphasic regimens. The two basal insulin analogues, glargine and detemir, developed by adjusting the isoelectric point and adding a fatty acid residue, respectively, have a protracted duration of action and a relatively smooth profile. Their pharmacokinetic and pharmacodynamic profiles have been assessed using euglycaemic clamp protocols. Both analogues have a longer duration of action, less of a peak of activity and a reduced variability with repeated injection. There is some evidence to suggest that detemir may have a slight hepatoselective effect. Clinical studies have shown a lower relative risk of hypoglycaemia and detemir appears to have a weight-sparing action. Insulin analogues represent a successful example of applied medical science. [source] Examining the relationships between the Pro12Ala variant in PPARG and Type 2 diabetes-related traits in UK samplesDIABETIC MEDICINE, Issue 12 2005E. Zeggini Abstract Aims The Pro12Ala polymorphism in the PPARG gene alters amino acid sequence and has shown consistent association with susceptibility to Type 2 diabetes in several populations. The present study makes use of large, well-characterized case-control resources to enhance understanding of this susceptibility effect by examining related traits, such as body mass index (BMI), waist,hip ratio and age at diagnosis. Methods The Pro12Ala variant was genotyped in two UK case samples, ascertained for positive family history and/or early onset of Type 2 diabetes (combined n = 971); and in 1257 ethnically matched control subjects. Results There were significant associations of the Pro12Ala single nucleotide polymorphism (SNP) genotypes with diabetes in both case-control comparisons (P = 0.025 and P = 0.039). Comparing individuals homozygous for the Pro allele, with those carrying an Ala allele, the combined odds ratio for diabetes was 1.40 (95% CIs, 1.12,1.76, P = 0.0031). There was no association between the variant and either waist,hip ratio or age at diagnosis. Proline homozygosity was associated with increased BMI in one patient group (P = 0.013) and decreased BMI in the other (P = 0.038). Conclusions This study confirms that variation within PPARG influences susceptibility to Type 2 diabetes in UK samples. However, the relationship between PPARG variation and BMI is more complex, and studies in much larger sample sets will be required to more precisely characterize the effect of this variant on adiposity. [source] Diversity of rice glutelin polypeptides in wild species assessed by the higher-temperature sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subunit-specific antibodiesELECTROPHORESIS, Issue 6 2008Nadar Khan Abstract In efforts to find genetic resources with high nutritional value of rice seed, we assessed the diversity of the major storage protein glutelin in 13 wild and 2 cultivated rice species by a unique SDS-PAGE method and subunit-specific antibodies. Maximum separation of microheterogeneous glutelin ,-polypeptides, which is a prerequisite for the diversity evaluation, could be attained by SDS-PAGE performed at higher temperature (45°C) than the generally employed temperatures (4,25°C). Seven antipeptide antibodies were raised against subunit-specific epitope sequences designed at five sites from four variable regions spanning the glutelin ,-polypeptides. High specificity of each antibody was confirmed using rice glutelin mutants, and demonstrated considerable variation in amino acid sequence and accumulation level of glutelin subunit in wild species, in combination with the higher-temperature SDS-PAGE. The degree of the variation was, however, changed according to the site of variable regions and the type of subunit. Some wild species accumulated nutritious GluB subunits more than cultivated rice. The wild species Oryza longiglumis and O. brachyantha had glutelin with low reactivity against most antibodies examined in this study, reflecting the significant divergence. Such wild species may hopefully serve as important genetic resources for nutritional improvement of cultivated rice. [source] Capillary electrophoresis of amphipathic ,-helical peptide diastereomersELECTROPHORESIS, Issue 1 2004Traian V. Popa Abstract We have made a rigorous assessment of the ability of capillary electrophoresis to resolve peptide diastereomers through its application to the separation of a series of synthetic 18-residue, amphipathic ,-helical monomeric peptide analogues, where a single site in the centre of the hydrophobic face of the ,-helix is substituted by 19 L - or D -amino acids. Such L - and D -peptide pairs have the same mass-to-charge ratio, amino acid sequence and intrinsic hydrophobicity, varying only in the stereochemistry of one residue. CE approaches assessed in their ability to separate diastereomeric peptide pairs included capillary zone electrophoresis (uncoated capillary), micellar electrokinetic chromatography (uncoated capillary in the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS), open-tubular capillary electrochromatography (C8 -coated capillary in the presence of 25% 2,2,2-trifluoroethanol (TFE) or 25% ethanol). Overall, the OT-CEC methods were the most effective at separating the most peptide pairs, particularly for those containing hydrophilic side chains. However, the MEKC approach proved most effective for separation of peptide pairs containing hydrophobic or aromatic side chains. [source] Novel DNA repair alkyltransferase from Caenorhabditis elegansENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2001Sreenivas Kanugula Abstract O6 -Alkylguanine DNA-alkyltransferase (AGT) is a widely distributed DNA repair protein that protects living organisms from endogenous and exogenous alkylation damage to DNA at the O6 -position of guanine. The search of the C. elegans genome database for an AGT protein revealed the presence of a protein (cAGT-2) with some similarity to known AGTs in addition to the easily recognized cAGT-1 protein. The predicted protein sequence of cAGT-2 contains the amino acid sequence ,ProCysHisPro, at the presumed active site of the protein, whereas all other known AGTs have ,ProCysHisArg,. A truncated version of the cAGT-2 protein was expressed in E. coli. This purified recombinant protein was able to repair O6 -methylguanine and O4 -methylthymine adducts in DNA in vitro and also reacted with the bulky benzyl adduct in O6 -benzylguanine. This fragment of cAGT-2 (104 amino acids) is the smallest protein possessing AGT activity yet described. The full-length cAGT-2 protein (274 amino acids) totally lacks the N-terminal domain present in all other known AGTs but has a long C-terminal extension that has significant homology to histone 1C. Expression of cAGT-2 in an E. coli strain lacking endogenous AGT activity provided modest but statistically significant resistance to the toxicity of N -methyl- N,-nitro- N -nitrosoguanidine, confirming that cAGT-2 is an alkyltransferase. Environ. Mol. Mutagen. 38:235,243, 2001. © 2001 Wiley-Liss, Inc. [source] Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural watersENVIRONMENTAL MICROBIOLOGY, Issue 2 2007Haewon Park Summary A recent report of a novel carbonic anhydrase (CDCA1) with Cd as its metal centre in the coastal diatom Thalassiosira weissflogii has led us to search for the occurrence of this Cd enzyme (CDCA) in other marine phytoplankton and in the environment. Using degenerate primers designed from the published sequences from T. weissflogii and a putative sequence in the genome of Thalassiosira pseudonana, we show that CDCA is widespread in diatom species and ubiquitous in the environment. All detected genes share more than 64% amino acid identity with the CDCA of T. pseudonana. Analysis of the amino acid sequence of CDCA shows that the putative Cd binding site resembles that of beta-class carbonic anhydrases (CAs). The prevalence of CAs in diatoms that presumably contain Cd at their active site probably reflects the very low concentration of Zn in the marine environment and the difficulty in acquiring inorganic carbon for photosynthesis. The cdca primers developed in this study should be useful for detecting cdca genes in the field, and studying the conditions under which they are expressed. [source] Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+ENVIRONMENTAL MICROBIOLOGY, Issue 5 2001Roni Cohen The white-rot fungus Pleurotus ostreatus produces both manganese-dependent peroxidase (MnP) and versatile peroxidase (VP) in non-manganese-amended peptone medium (PM). We studied the effect of Mn2+ supplementation on MnPs and VPs in P. ostreatus by analysing the enzymatic and transcript abundance profiles of the peroxidases, as well as the lignin mineralization rate. The fungus was grown in PM under solid-state conditions using perlite as an inert solid support. Mn2+ amendment resulted in a 1.7-fold increase in [14C]-lignin mineralization relative to unamended medium. Anion-exchange chromatography was used to resolve the fungal peroxidase's enzymatic activity profile. Five peaks (P1,P5) of VP and one peak (P6) of MnP activity were detected in unamended medium. In Mn2+ -amended medium, a reduction in the activity of the VPs was observed. On the other hand, a sharp increase in the MnP activity level of peak P6 was detected. The P6 isoenzyme was purified and showed manganese-dependent peroxidation of phenolic substrates. Internal sequence analysis of the purified enzyme revealed 100% identity with the deduced amino acid sequence of P. ostreatus MnP3 (GenBank AB016519). The effect of Mn2+ on the relative abundance of gene transcripts of three VPs and one MnP from P. ostreatus was monitored using reverse transcription,polymerase chain reaction (RT,PCR) with oligonucleotide primer sets synthesized on the basis of non-conserved sequences of the different peroxidases. The reduction in VP gene transcript abundance and the increase in mnp3 transcript level were collinear with the changes observed in the enzyme activity profiles. These results indicate that the activity of peroxidases is regulated at the transcriptional level. We suggest that the expression of MnP and VP may be differentially regulated by the presence of Mn2+. [source] NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008Kwokyin Hui Abstract Local voltage-gated calcium channels, which regulate intracellular Ca2+ levels by allowing Ca2+ influx, play an important role in guiding and shaping growth cones, and in regulating the outgrowth and branching of neurites. Therefore, elucidating the mechanisms that regulate the biophysical properties of whole-cell calcium currents in the growth cones and somata of growing neurons is important to improving our understanding of neuronal development and regeneration. In this study, taking advantage of the large size of the pedal A (PeA) neurons in Lymnaea stagnalis, we compared the biophysical properties of somata and growth cone whole-cell calcium channel currents using Ba2+ and Ca2+ as current carriers. We found that somata and growth cone currents exhibit similar high-voltage activation properties. However, Ba2+ and Ca2+ currents in growth cones and somata are differentially affected by a dominant-negative peptide containing the C-terminal amino acid sequence of neuronal calcium sensor-1 (NCS-1). The peptide selectively reduces the peak and sustained components of current densities and the slope conductance in growth cones, and shifts the reversal potential of the growth cone currents to more hyperpolarized voltages. In contrast, the peptide had no significant effect on the somata calcium channels. Thus, we conclude that NCS-1 differentially modulates Ca2+ currents in the somata and growth cones of regenerating neurons, and may serve as a key regulator to facilitate the growth cone calcium channel activity. [source] Functional characterization of a neuropeptide F-like receptor from Drosophila melanogasterEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003Guoping Feng Abstract A cDNA clone encoding a seven-transmembrane domain, G-protein-coupled receptor (NPFR76F, also called GPCR60), has been isolated from Drosophila melanogaster. Deletion mapping showed that the gene encoding this receptor is located on the left arm of the third chromosome at position 76F. Northern blotting and whole mount in situ hybridization have shown that this receptor is expressed in a limited number of neurons in the central and peripheral nervous systems of embryos and adults. Analysis of the deduced amino acid sequence suggests that this receptor is related to vertebrate neuropeptide Y receptors. This Drosophila receptor shows 62,66% similarity and 32,34% identity to type 2 neuropeptide Y receptors cloned from a variety of vertebrate sources. Coexpression in Xenopus oocytes of NPFR76F with the promiscuous G-protein G,16 showed that this receptor is activated by the vertebrate neuropeptide Y family to produce inward currents due to the activation of an endogenous oocyte calcium-dependent chloride current. Maximum receptor activation was achieved with short, putative Drosophila neuropeptide F peptides (Drm-sNPF-1, 2 and 2s). Neuropeptide F-like peptides in Drosophila have been implicated in a signalling system that modulates food response and social behaviour. The identification of this neuropeptide F-like receptor and its endogenous ligand by reverse pharmacology will facilitate genetic and behavioural studies of neuropeptide functions in Drosophila. [source] Characterization of membrane-bound prolyl endopeptidase from brainFEBS JOURNAL, Issue 17 2008Jofre Tenorio-Laranga Prolyl oligopeptidase (POP) is a serine protease that cleaves small peptides at the carboxyl side of an internal proline residue. Substance P, arginine,vasopressin, thyroliberin and gonadoliberin are proposed physiological substrates of this protease. POP has been implicated in a variety of brain processes, including learning, memory, and mood regulation, as well as in pathologies such as neurodegeneration, hypertension, and psychiatric disorders. Although POP has been considered to be a soluble cytoplasmic peptidase, significant levels of activity have been detected in membranes and in extracellular fluids such as serum, cerebrospinal fluid, seminal fluid, and urine, suggesting the existence of noncytoplasmic forms. Furthermore, a closely associated membrane prolyl endopeptidase (PE) activity has been previously detected in synaptosomes and shown to be different from the cytoplasmic POP activity. Here we isolated, purified and characterized this membrane-bound PE, herein referred to as mPOP. Although, when attached to membranes, mPOP presents certain features that distinguish it from the classical POP, our results indicate that this protein has the same amino acid sequence as POP except for the possible addition of a hydrophobic membrane anchor. The kinetic properties of detergent-soluble mPOP are fully comparable to those of POP; however, when attached to the membranes in its natural conformation, mPOP is significantly less active and, moreover, it migrates anomalously in SDS/PAGE. Our results are the first to show that membrane-bound and cytoplasmic POP are encoded by variants of the same gene. [source] Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L)FEBS JOURNAL, Issue 24 2007Andre Müller cDNA for octopine dehydrogenase (ODH) from the adductor muscle of the great scallop, Pecten maximus, was cloned using 5,- and 3,-RACE. The cDNA comprises an ORF of 1197 nucleotides and the deduced amino acid sequence encodes a protein of 399 amino acids. ODH was heterologously expressed in Escherichia coli with a C-terminal penta His-tag. ODH,5His was purified to homogeneity using metal,chelate affinity chromatography and Sephadex G-100 gel filtration. Recombinant ODH had kinetic properties similar to those of wild-type ODH isolated from the scallop's adductor muscle. Site-directed mutagenesis was used to elucidate the involvement of several amino acid residues for the reaction catalyzed by ODH. Cys148, which is conserved in all opine dehydrogenases known to date, was converted to serine or alanine, showing that this residue is not intrinsically important for catalysis. His212, Arg324 and Asp329, which are also conserved in all known opine dehydrogenase sequences, were subjected to site-directed mutagenesis. Modification of these residues revealed their importance for the catalytic activity of the enzyme. Conversion of each of these residues to alanine resulted in strong increases in Km and decreases in kcat values for pyruvate and l -arginine, but had little effect on the Km and kcat values for NADH. Assuming a similar structure for ODH compared with the only available structure of a bacterial opine dehydrogenase, these three amino acids may function as a catalytic triad in ODH similar to that found in lactate dehydrogenase or malate dehydrogenase. The carboxyl group of pyruvate is then stabilized by Arg324. In addition to orienting the substrate, His212 will act as an acid,base catalyst by donating a proton to the carbonyl group of pyruvate. The acidity of this histidine is further increased by the proximity of Asp329. [source] Calcite-specific coupling protein in barnacle underwater cementFEBS JOURNAL, Issue 24 2007Youichi Mori The barnacle relies for its attachment to underwater foreign substrata on the formation of a multiprotein complex called cement. The 20 kDa cement protein is a component of Megabalanus rosa cement, although its specific function in underwater attachment has not, until now, been known. The recombinant form of the protein expressed in bacteria was purified in soluble form under physiological conditions, and confirmed to retain almost the same structure as that of the native protein. Both the protein from the adhesive layer of the barnacle and the recombinant protein were characterized. This revealed that abundant Cys residues, which accounted for 17% of the total residues, were in the intramolecular disulfide form, and were essential for the proper folding of the monomeric protein structure. The recombinant protein was adsorbed to calcite and metal oxides in seawater, but not to glass and synthetic polymers. The adsorption isotherm for adsorption to calcite fitted the Langmuir model well, indicating that the protein is a calcite-specific adsorbent. An evaluation of the distribution of the molecular size in solution by analytical ultracentrifugation indicated that the recombinant protein exists as a monomer in 100 mm to 1 m NaCl solution; thus, the protein acts as a monomer when interacting with the calcite surface. cDNA encoding a homologous protein was isolated from Balanus albicostatus, and its derived amino acid sequence was compared with that from M. rosa. Calcite is the major constituent in both the shell of barnacle base and the periphery, which is also a possible target for the cement, due to the gregarious nature of the organisms. The specificity of the protein for calcite may be related to the fact that calcite is the most frequent material attached by the cement. [source] Molecular cloning of the ecdysone receptor and the retinoid X receptor from the scorpion Liocheles australasiaeFEBS JOURNAL, Issue 23 2007Yoshiaki Nakagawa cDNAs of the ecdysone receptor and the retinoid X receptor were cloned from the Japanese scorpion Liocheles australasiae, and the amino acid sequences were deduced. The full-length cDNA sequences of the L. australasiae ecdysone receptor and the L. australasiae retinoid X receptor were 2881 and 1977 bp in length, respectively, and the open reading frames encoded proteins of 560 and 414 amino acids. The amino acid sequence of the L. australasiae ecdysone receptor was similar to that of the ecdysone receptor-A of the soft tick, Ornithodoros moubata (68%) and to that of the ecdysone receptor-A1 of the lone star tick, Amblyomma americanum (66%), but showed lower similarity to the ecdysone receptors of Orthoptera and Coleoptera (53,57%). The primary sequence of the ligand-binding region of the L. australasiae ecdysone receptor was highly homologous to that of ticks (85,86%). The amino acid sequence of the L. australasiae retinoid X receptor was also homologous to the amino acid sequence of ultraspiracles of ticks (63%) and insects belonging to the orders Orthoptera and Coleoptera (60,64%). The identity of both the L. australasiae ecdysone receptor and the L. australasiae retinoid X receptor to their lepidopteran and dipteran orthologs was less than 50%. The cDNAs of both the L. australasiae ecdysone receptor (L. australasiae ecdysone receptor-A) and the L. australasiae retinoid X receptor were successfully translated in vitro using a rabbit reticulocyte lysate system. An ecdysone analog, ponasterone A, bound to L. australasiae ecdysone receptor-A (KD = 4.2 nm), but not to L. australasiae retinoid X receptor. The L. australasiae retinoid X receptor did not enhance the binding of ponasterone A to L. australasiae ecdysone receptor-A, although L. australasiae retinoid X receptor was necessary for the binding of L. australasiae ecdysone receptor-A to ecdysone response elements. [source] The influence of cholesterol on the interaction of HIV gp41 membrane proximal region-derived peptides with lipid bilayersFEBS JOURNAL, Issue 19 2007Ana S. Veiga A small amino acid sequence (LWYIK) inside the HIV-1 gp41 ectodomain membrane proximal region (MPR) is commonly referred to as a cholesterol-binding domain. To further study this unique and peculiar property we have used fluorescence spectroscopy techniques to unravel the membrane interaction properties of three MPR-derived synthetic peptides: the membrane proximal region peptide-complete (MPRP-C) which corresponds to the complete MPR; the membrane proximal region peptide-short (MPRP-S), which corresponds to the last five MPR amino acid residues (the putative cholesterol-binding domain) and the membrane proximal region peptide-intermediate (MPRP-I), which corresponds to the MPRP-C peptide without the MPRP-S sequence. MPRP-C and MPRP-I membrane interaction is largely independent of the membrane phase. Membrane interaction of MPRP-S occurs for fluid phase membranes but not in gel phase membranes or cholesterol-containing bilayers. The gp41 ectodomain MPR may have a very specific function in viral fusion through the concerted and combined action of cholesterol-binding and non-cholesterol-binding domains (i.e. domains corresponding to MPRP-S and MPRP-I, respectively). [source] Prediction of coenzyme specificity in dehydrogenases/ reductasesFEBS JOURNAL, Issue 6 2006A hidden Markov model-based method, its application on complete genomes Dehydrogenases and reductases are enzymes of fundamental metabolic importance that often adopt a specific structure known as the Rossmann fold. This fold, consisting of a six-stranded ,-sheet surrounded by ,-helices, is responsible for coenzyme binding. We have developed a method to identify Rossmann folds and predict their coenzyme specificity (NAD, NADP or FAD) using only the amino acid sequence as input. The method is based upon hidden Markov models and sequence pattern analysis. The prediction sensitivity is 79% and the selectivity close to 100%. The method was applied on a set of 68 genomes, representing the three kingdoms archaea, bacteria and eukaryota. In prokaryotes, 3% of the genes were found to code for Rossmann-fold proteins, while the corresponding ratio in eukaryotes is only around 1%. In all genomes, NAD is the most preferred cofactor (41,49%), followed by NADP with 30,38%, while FAD is the least preferred cofactor (21%). However, the NAD preponderance over NADP is most pronounced in archaea, and least in eukaryotes. In all three kingdoms, only 3,8% of the Rossmann proteins are predicted to have more than one membrane-spanning segment, which is much lower than the frequency of membrane proteins in general. Analysis of the major protein types in eukaryotes reveals that the most common type (26%) of the Rossmann proteins are short-chain dehydrogenases/reductases. In addition, the identified Rossmann proteins were analyzed with respect to further protein types, enzyme classes and redundancy. The described method is available at http://www.ifm.liu.se/bioinfo, where the preferred coenzyme and its binding region are predicted given an amino acid sequence as input. [source] Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp.FEBS JOURNAL, Issue 7 2004SIB1 in cold-adaptation A psychrotrophic bacterium Shewanella sp. strain SIB1 was grown at 4 and 20 °C, and total soluble proteins extracted from the cells were analyzed by two-dimensional polyacrylamide gel electrophoresis. Comparison of these patterns showed that the cellular content of a protein with a molecular mass of 28 kDa and an isoelectric point of four greatly increased at 4 °C compared to that at 20 °C. Determination of the N-terminal amino acid sequence, followed by the cloning and sequencing of the gene encoding this protein, revealed that this protein is a member of the FKBP family of proteins with an amino acid sequence identity of 56% to Escherichia coli FKBP22. This protein was overproduced in E. coli in a His-tagged form, purified, and analyzed for peptidyl-prolyl cis-trans isomerase activity. When this activity was determined by the protease coupling assay using N -succinyl-Ala-Leu-Pro-Phe- p -nitroanilide as a substrate at various temperatures, the protein exhibited the highest activity at 10 °C with a kcat/Km value of 0.87 µm,1·s,1. When the peptidyl-prolyl cis-trans isomerase activity was determined by the RNase T1 refolding assay at 10 and 20 °C, the protein exhibited higher activity at 10 °C with a kcat/Km value of 0.50 µm,1·s,1. These kcat/Km values are lower but comparable to those of E. coli FKBP22. We propose that a FKBP family protein is involved in cold-adaptation of psychrotrophic bacteria. [source] A 49 kDa microtubule cross-linking protein from Artemia franciscana is a coenzyme A-transferaseFEBS JOURNAL, Issue 24 2003Mindy M. Oulton Embryos and larvae of the brine shrimp, Artemia franciscana, were shown previously to possess a protein, now termed p49, which cross-links microtubules in vitro. Molecular characteristics of p49 were described, but the protein's identity and its role in the cell were not determined. Degenerate oligonucleotide primers designed on the basis of peptide sequence obtained by Edman degradation during this study were used to generate p49 cDNAs by RT-PCR and these were cloned and sequenced. Comparison with archived sequences revealed that the deduced amino acid sequence of p49 resembled the Drosophila gene product CG7920, as well as related proteins encoded in the genomes of Anopheles and Caenorhabditis. Similar proteins exist in several bacteria but no evident homologues were found in vertebrates and plants, and only very distant homologues resided in yeast. When evolutionary relationships were compared, p49 and the homologues from Drosophila, Anopheles and Caenorhabditis formed a distinct subcluster within phylogenetic trees. Additionally, the predicted secondary structures of p49, 4-hydroxybutyrate CoA-transferase from Clostridium aminobutyricum and glutaconate CoA-transferase from Acidaminococcus fermentans were similar and the enzymes may possess related catalytic mechanisms. The purified Artemia protein exhibited 4-hydroxybutyrate CoA-transferase activity, thereby establishing p49 as the first crustacean CoA-transferase to be characterized. Probing of Western blots with an antibody against p49 revealed a cross-reactive protein in Drosophila that associated with microtubules, but to a lesser extent than did p49 from Artemia. [source] Mutational analysis of plasminogen activator inhibitor-1FEBS JOURNAL, Issue 8 2003-helix F, Interactions of, its neighbouring structural elements regulates the activity, the rate of latency transition The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in ,-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of ,-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and ,1 -protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and ,-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop,sheet interactions in serpins. [source] Functional analysis of DM64, an antimyotoxic protein with immunoglobulin-like structure from Didelphis marsupialis serumFEBS JOURNAL, Issue 24 2002Surza L. G. Rocha Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human ,1B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood. [source] Identification and characterization of a new gene from Variovorax paradoxus Iso1 encoding N -acyl- d -amino acid amidohydrolase responsible for d -amino acid productionFEBS JOURNAL, Issue 19 2002Pei-Hsun Lin An N -acyl- d -amino acid amidohydrolase (N -D-AAase) was identified in cell extracts of a strain, Iso1, isolated from an environment containing N -acetyl- d -methionine. The bacterium was classified as Variovorax paradoxus by phylogenetic analysis. The gene was cloned and sequenced. The gene consisted of a 1467-bp ORF encoding a polypeptide of 488 amino acids. The V. paradoxusN -D-AAase showed significant amino acid similarity to the N -acyl- d -amino acid amidohydrolases of the two eubacteria Alcaligenes xylosoxydans A-6 (44,56% identity), Alcaligenes facelis DA1 (54% identity) and the hyperthermophilic archaeon Pyrococcus abyssi (42% identity). After over-expression of the N -D-AAase protein in Escherichia coli, the enzyme was purified by multistep chromatography. The native molecular mass was 52.8 kDa, which agreed with the predicted molecular mass of 52 798 Da and the enzyme appeared to be a monomer protein by gel-filtration chromatography. A homogenous protein with a specific activity of 516 U·mg,1 was finally obtained. After peptide sequencing by LC/MS/MS, the results were in agreement with the deduced amino acid sequence of the N -D-AAase. The pI of the enzyme was 5.12 and it had an optimal pH and temperature of 7.5 and 50 °C, respectively. After 30 min heat treatment at 45 °C, between pH 6 and pH 8, 80% activity remained. The N -D-AAase had higher hydrolysing activity against N -acetyl- d -amino acid derivates containing d -methionine, d -leucine and d -alanine and against N -chloroacetyl- d -phenylalanine. Importantly, the enzyme does not act on the N -acetyl- l -amino acid derivatives. The enzyme was inhibited by chelating agents and certain metal ions, but was activated by 1 mm of Co2+ and Mg2+. Thus, the N -D-AAase from V. paradoxus can be considered a chiral specific and metal-dependent enzyme. [source] Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP)FEBS JOURNAL, Issue 17 2000Holger Thiele In humans and rabbits, the TPT1 gene encoding the translationally controlled tumour protein TCTP generates two mRNAs (TCTP mRNA1 and TCTP mRNA2) which differ in the length of their 3, untranslated regions. The distribution of these mRNAs was investigated in 10 rabbit and 50 human tissues. They were transcribed in all tissues investigated, but differed considerably in their quantity and ratio of expression. This indicates an extensive transcriptional control and involvement of tissue-specific factors. In the rabbit genome numerous processed, intronless pseudogenes were detected. Four, corresponding to both types of mRNAs, were sequenced and analysed in detail; all displayed only few mutations and were either preserved completely in the original amino acid sequence of the intron containing gene, or contained only minor mutations in the coding region which did not interrupt the open reading frame. In the mRNA population of rabbit reticulocytes two additional TCTP RNAs of the TCTP mRNA2 type were detected, which have the characteristics of pseudogene transcripts. Pseudogene transcription was supported further by CAT reporter gene assays showing substantial promoter activity of 5,-flanking regions of two TPT1 pseudogenes. [source] Molecular characterization and antifungal activity of a family 46 chitosanase from Amycolatopsis sp.FEMS MICROBIOLOGY LETTERS, Issue 1 2009CsO- Abstract An actinomycete strain, Amycolatopsis sp. CsO-2, produces a 27-kDa chitosanase. To reveal the molecular characteristics of the enzyme, its corresponding gene ctoA was cloned by a reverse genetic technique, based on the N-terminal amino acid sequence of the protein. The encoded CtoA protein was deduced to be composed of 286 amino acids, including a putative signal peptide (1,48), and exhibited 83% identity in the amino acid sequence with the family 46 chitosanases from Streptomyces sp. N174 or Nocardioides sp. N106. The active recombinant CtoA protein was successfully overproduced in Escherichia coli. The mutant protein E22Q, in which the glutamic acid residue 22 was replaced with glutamine, abolished the chitosanase activity, showing that the Glu22 residue is required for the enzymatic activity. CtoA exhibited antifungal activity against Rhizopus oryzae, which is known to produce chitosan probably as a cell wall component. In contrast, E22Q did not inhibit the growth of the fungus, suggesting that chitosan-hydrolyzing activity is essential for the antifungal activity. It is noteworthy that the antifungal effect of CtoA against R. oryzae was drastically enhanced by the simultaneous addition of the family 19 chitinase ChiC from Streptomyces griseus. [source] Identification of the ornithine decarboxylase gene in the putrescine-producer Oenococcus oeni BIFI-83FEMS MICROBIOLOGY LETTERS, Issue 2 2004Angela Marcobal Abstract We report here the identification of an ornithine decarboxylase (ODC) gene in the putrescine-producer Oenococcus oeni BIFI-83 strain. The gene contains a 2,235-nucleotide open reading frame encoding a 745-amino acid residues protein with a deduced molecular mass of 81 kDa. The primary structure of the ODC deduced from the nucleotide sequence has a consensus sequence containing the pyridoxal-5-phosphate (PLP) binding domain, and the critical amino acids residues involved in enzymatic activity are also conserved. As determined by BLAST analysis, the deduced amino acid sequence of the odc gene shares a 67% identity with the ODC protein from Lactobacillus 30a. The odc gene appears to be rarely present in the genome of O. oeni, since in a screening for the presence of this gene in 42 oenococcal strains none of the strains possessed an odc gene copy. [source] Phylogenetic reconstruction of Gram-positive organisms based on comparative sequence analysis of molecular chaperones from the ruminal microorganism Ruminococcus flavefaciens FD-1FEMS MICROBIOLOGY LETTERS, Issue 1 2003Dionysios A. Antonopoulos Abstract Primers designed on the basis of nucleotide sequences conserved in DnaK and GroEL from Gram-positive organisms were used to PCR amplify internal regions of the cognate genes from the anaerobic ruminal cellulolytic bacterium Ruminococcus flavefaciens FD-1. Genome walking was then utilized to elucidate the remainder of the sequences in addition to upstream and downstream regions. The full sequence of the gene encoding the GroES protein (groES) was found directly upstream from groEL. The deduced amino acid sequence of the groEL gene showed the highest homology with the amino acid sequence of the Clostridium thermocellum GroEL protein (72% amino acid identity). Similarly, translation of the groES nucleotide sequence showed highest homology to the C. thermocellum GroES protein (61% amino acid identity). Analysis of the upstream region of this chaperonin operon revealed a CIRCE regulatory element 45 bp upstream from the putative start of the groES ORF. The deduced amino acid sequence of the putative dnaK gene showed the highest homology with the amino acid sequence of the Clostridium acetobutylicum DnaK protein (68% amino acid identity). Phylogenetic analyses based on the translated sequences reiterate this relationship between R. flavefaciens and the Clostridia. However, when the nucleotide sequences of Gram-positive organisms are analyzed, a different topology occurs of the relationship between high- and low-G+C Gram-positive organisms to the 16S rRNA interpretation. [source] pH-dependent translocation of ,-tocopherol transfer protein (,-TTP) between hepatic cytosol and late endosomesGENES TO CELLS, Issue 10 2003Masakuni Horiguchi Background:, ,-Tocopherol transfer protein (,-TTP), a member of the Sec14 protein family, plays an important role in transporting ,-tocopherol, a major lipid-soluble anti-oxidant, in the cytosolic compartment of hepatocytes and is known as a product of the causative gene for familial isolated vitamin E deficiency. It has been shown that the secretion of hepatocyte ,-tocopherol taken up with plasma lipoproteins is facilitated by ,-TTP. To explore the mechanism of ,-TTP mediated ,-tocopherol secretion, we investigated drugs which may affect this secretion. Results:, We found that, in a hepatocyte cell culture system, intracellular ,-tocopherol transport is impaired by chloroquine, an agent known for its function of elevating the pH in acidic compartments. Under chloroquine treatment, the diffuse cytosolic distribution of ,-TTP changes to a punctate pattern. Double-staining experiments with endocytosis markers revealed that ,-TTP accumulates transiently on the cytoplasmic surface of late endosomal membranes. This phenomenon is specific for hepatoma cell lines or primarily cultured hepatocytes. Other members of the Sec14 family, such as cellular retinaldehyde-binding protein (CRALBP) and supernatant protein factor (SPF), do not show this accumulation. Furthermore, we elucidate that the obligatory amino acid sequence for this function is located between amino acids 21 and 50, upstream of the N-terminal end of the lipid-binding domain. Conclusion:, We hypothesize that a liver-specific target molecule for ,-TTP exists on the late endosomal membrane surface. This transient binding may explain the mechanism of how ,-tocopherol is transferred from late endosomes to cytosolic ,-TTP. [source] |