| |||
Acid Pool (acid + pool)
Selected AbstractsNovel pathways for glycaemic control in type 2 diabetes: focus on bile acid modulationDIABETES OBESITY & METABOLISM, Issue 11 2008Eliot A. Brinton Type 2 diabetes is a common disorder with high risk of macrovascular and microvascular complications. These complications are largely driven by hyperglycaemia, dyslipidaemia and hypertension, for which aggressive treatment is thus warranted. Achieving and maintaining control of all three risk factors is especially difficult, however, and new therapeutic approaches could be useful. Bile acids have a well-established and important role in cholesterol homeostasis. Normally, their levels are maintained primarily by ileal reabsorption and enterohepatic recycling. Bile acid sequestrants bind bile acids in the intestine, reduce this recycling and deplete the bile acid pool, thereby stimulating use of hepatic cholesterol for bile acid synthesis, which leads to accelerated removal of LDL from the plasma and a decrease in LDL-cholesterol levels. Interestingly, recent evidence suggests that bile acid sequestrants can lower glucose levels to a clinically meaningful degree. This review presents this evidence and the possible mechanisms by which these glucose-lowering effects occur and discusses the apparently unique ability of bile acid sequestrants among lipid-lowering agents to significantly improve two cardiovascular risk factors, hyperglycaemia and dyslipidaemia. There is renewed interest in the use of bile acid sequestrants in individuals with type 2 diabetes, most of whom would benefit from additional reductions in both LDL-cholesterol and glycaemia. [source] Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger,HEPATOLOGY, Issue 2 2006Jesús M. Banales Canalicular bile is modified along bile ducts through reabsorptive and secretory processes regulated by nerves, bile salts, and hormones such as secretin. Secretin stimulates ductular cystic fibrosis transmembrane conductance regulator (CFTR),dependent Cl, efflux and subsequent biliary HCO3, secretion, possibly via Cl,/HCO3, anion exchange (AE). However, the contribution of secretin to bile regulation in the normal rat, the significance of choleretic bile salts in secretin effects, and the role of Cl,/HCO3, exchange in secretin-stimulated HCO3, secretion all remain unclear. Here, secretin was administered to normal rats with maintained bile acid pool via continuous taurocholate infusion. Bile flow and biliary HCO3, and Cl, excretion were monitored following intrabiliary retrograde fluxes of saline solutions with and without the Cl, channel inhibitor 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) or the Cl,/HCO3, exchange inhibitor 4,4,-diisothiocyanatostilbene-2,2,-disulfonic acid (DIDS). Secretin increased bile flow and biliary excretion of HCO3, and Cl,. Interestingly, secretin effects were not observed in the absence of taurocholate. Whereas secretin effects were all blocked by intrabiliary NPPB, DIDS only inhibited secretin-induced increases in bile flow and HCO3, excretion but not the increased Cl, excretion, revealing a role of biliary Cl,/HCO3, exchange in secretin-induced, bicarbonate-rich choleresis in normal rats. Finally, small hairpin RNA adenoviral constructs were used to demonstrate the involvement of the Na+ -independent anion exchanger 2 (AE2) through gene silencing in normal rat cholangiocytes. AE2 gene silencing caused a marked inhibition of unstimulated and secretin-stimulated Cl,/HCO3, exchange. In conclusion, maintenance of the bile acid pool is crucial for secretin to induce bicarbonate-rich choleresis in the normal rat and that this occurs via a chloride,bicarbonate exchange process consistent with AE2 function. (HEPATOLOGY 2006;43:266,275.) [source] Free Amino Acids in Botanicals and Botanical PreparationsJOURNAL OF FOOD SCIENCE, Issue 5 2008B. Carratù ABSTRACT:, Numerous studies were carried out about aminoacidic composition of vegetable proteins, but information about the free amino acid pool and the role of these substances is very incomplete. The aim of this paper was to contribute to the scarce knowledge concerning the composition of free amino acids in botanicals and botanical preparations widely used as food, in dietary supplements, and in pharmaceutical products. This work studied the composition of free amino acids, identified the major components of 19 species of plants, and evaluated the influence of different types of extraction on the amino acid profile. Amino acids were determined using an automatic precolumn derivatization with fluorenylmethyl-chloroformate and reversed-phase liquid chromatography with fluorescence and ultraviolet detection. The amounts of total free amino acids varied widely between plants, from approximately 12 g in 100 g of Echinacea pallida extract to less than 60 mg in the same amount of Coleus forskohlii, Garcinia cambogia, and Glycine max. In 13 plants arginine, asparagine, glutamine, proline, and ,-aminobutyric acid were the free amino acids found in preponderant quantities. The levels of free amino acids above the quantification limit in 36 assayed samples of botanicals, extracts, and supplements are shown. [source] Gene expression normalization in a dual-compartment system: a real-time quantitative polymerase chain reaction protocol for symbiotic anthozoansMOLECULAR ECOLOGY RESOURCES, Issue 2 2009ANDERSON B. MAYFIELD Abstract Traditional real-time quantitative polymerase chain reaction protocols cannot be used accurately with symbiotic organisms unless the relative contribution of each symbiotic compartment to the total nucleic acid pool is known. A modified ,universal reference gene' protocol was created for reef-building corals and sea anemones, anthozoans that harbour endosymbiotic dinoflagellates belonging to the genus Symbiodinium. Gene expression values are first normalized to an RNA spike and then to a symbiont molecular proxy that represents the number of Symbiodinium cells extracted and present in the RNA. The latter is quantified using the number of genome copies of heat shock protein-70 (HSP70) amplified in the real-time quantitative polymerase chain reaction. Gene expression values are then normalized to the total concentration of RNA to account for differences in the amount of live tissue extracted among experimental treatments and replicates. The molecular quantification of symbiont cells and effect of increasing symbiont contributions to the nucleic acid pool on gene expression were tested in vivo using differentially infected sea anemones Aiptasia pulchella. This protocol has broad application to researchers who seek to measure gene expression in mixed organism assemblages. [source] Effects of etomidate on free intracellular amino acid concentrations in polymorphonuclear leucocytes in vitroACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2000J. Mühling Background: Previous studies have shown the inhibitory effects of etomidate on polymorphonuclear leucocyte (PMN) function. No reports exist, however, regarding free intracellular amino acid metabolism, although physiological cell metabolism and basic cell functions rely upon a balanced intracellular amino acid content and the cell membrane-mediated separation of cellular amino acids from the extracellular plasma amino acid pool. Thus, in the current study, we evaluated the effects of etomidate on free intracellular amino acid metabolism in PMN. Methods: With ethics committee approval, blood was withdrawn from 35 healthy volunteers and incubated (1 h) either with 0 ,g/ml, 0.0156 ,g/ml, 0.0625 ,g/ml or 0.5 ,g/ml of etomidate as well as with its additives (propylene glycol and Lipofundin MCT® 10%). The PMN were separated using standardized Percoll® -gradient and centrifugation procedure before deep-freezing and lyophilization techniques were employed. All PMN samples were dissolved in methanol/H2O, and the concentrations of free intracellular amino acids were monitored using both novel advanced PMN-separation and high-performance liquid chromatography techniques. Results: Etomidate influenced important free amino acid profiles in PMN in a dose-dependent manner, indicating complex changes of cellular amino acid turnover. Neither propylene glycol nor Lipofundin MCT® 10% changed free amino acid concentrations in PMN. Conclusions: For the first time, the effects of etomidate on free intracellular amino acid metabolism in PMN have been investigated. Our results draw attention to the biochemical pathways which may be involved in etomidate-induced alterations in PMN function and cellular immunocompetence. [source] Dietary histidine affects lens protein turnover and synthesis of N-acetylhistidine in Atlantic salmon (Salmo salar L.) undergoing parr,smolt transformationAQUACULTURE NUTRITION, Issue 5 2005O. BRECK Abstract This study was conducted to investigate protein synthesis rates and metabolism of histidine (His)-derivatives in lenses of Atlantic salmon (Salmo salar L.) of different dietary His background during parr,smolt transformation. Two populations of Atlantic salmon parr of equal origin were established in freshwater (FW), 3 months prior to transfer to seawater (SW). The populations were fed either a control diet (CD) containing 8.9 g kg,1 His or the same diet added crystalline His to a total level of 14.2 g kg,1 (HD). On the basis of these two populations, 14C His force-feeding studies were performed; in FW 3 weeks prior to sea transfer and in SW 6 weeks after transfer. The studies were conducted by force-feeding the respective diets enriched with 14C labelled His, with subsequent measurements of incorporation of 14C His into lens free amino acid pool, as well as into lens proteins and other free His pool fractions. The latter included the major lens imidazole N-acetylhistidine (NAH). Lens concentrations of His and NAH were clearly influenced by dietary His history, both in parr and smolt. The lens His and NAH concentrations in the CD population were considerably lower in SW than in FW, while in the HD group the His level was equal and the NAH level 50% higher in SW than in FW. Fractional synthesis rate for NAH, KS (NAH), in FW was 8.2 and 4.2 ,mol g,1 day,1 for fish in the CD and HD populations, respectively. The corresponding KS (NAH) values in SW were 5.1 and 33.0 ,mol g,1 day,1. Our data show that free His is rapidly converted to NAH in the lens, and that NAH seems to have a very high turnover, especially in salmon reared in SW. Fractional synthesis rate for lens proteins, KS (PROTEIN), ranged between 1.8 and 17.3% day,1 (182 and 2791 ,g g,1 day,1, respectively), and was generally higher in SW than in FW (P < 0.01). In SW, KS (PROTEIN) was highest in fish in the HD population (P < 0.05), whereas lens protein retention in the HD group was significantly lower than the CD group (P = 0.01). In a second model assuming that His from lens NAH is available for protein synthesis, calculated values of KS (PROTEIN) ranged between 0.17% day,1 (17.6 ,g g,1 day,1) and 0.48% day,1 (70.2 ,g g,1 day,1). Cataract scores recorded in the His populations at a later point (day 204), showed that the CD fish had significantly higher mean cataract scores than individuals in the HD population (P < 0.01), confirming that low levels of lens His and NAH are associated with cataract development. [source] Mechanisms of action of isoniazidMOLECULAR MICROBIOLOGY, Issue 5 2006Graham S. Timmins Summary For decades after its introduction, the mechanisms of action of the front-line antituberculosis therapeutic agent isoniazid (INH) remained unclear. Recent developments have shown that peroxidative activation of isoniazid by the mycobacterial enzyme KatG generates reactive species that form adducts with NAD+ and NADP+ that are potent inhibitors of lipid and nucleic acid biosynthetic enzymes. A direct role for some isoniazid-derived reactive species, such as nitric oxide, in inhibiting mycobacterial metabolic enzymes has also been shown. The concerted effects of these activities , inhibition of cell wall lipid synthesis, depletion of nucleic acid pools and metabolic depression , drive the exquisite potency and selectivity of this agent. To understand INH action and resistance fully, a synthesis of knowledge is required from multiple separate lines of research , including molecular genetic approaches, in vitro biochemical studies and free radical chemistry , which is the intent of this review. [source] Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leavesPHYSIOLOGIA PLANTARUM, Issue 1 2008Ana Rita Matos Patatin-like genes have recently been cloned from several plant species and found to be involved in stress responses and development. In previous work, we have shown that a patatin-like gene encoding a galactolipid acyl hydrolase (EC 3.1.1.26) was stimulated by drought in the leaves of the tropical legume, Vigna unguiculata L. Walp. The aim of the present work was to study the expression of patatin-like genes in Arabidopsis thaliana under water deficit. Expression of six genes was studied by reverse transcriptase polymerase chain reaction in leaves of plants submitted to progressive drought stress induced by withholding water and also in different plant organs. Three genes, designated AtPAT IIA, AtPAT IVC and AtPAT IIIA, were shown to be upregulated by water deficit but with different kinetics, while the other patatin-like genes were either constitutive or not expressed in leaves. The accumulation of transcripts of AtPAT IIA in the early stages of the drought treatment was coordinated with the upregulation of lipoxygenase and allene oxide synthase genes. AtPAT IIA expression was also induced by wounding and methyl jasmonate treatments. The in vitro lipolytic activity toward monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidylcholine and phosphatidylglycerol was confirmed by producing the recombinant protein ATPAT IIA in insect cells. The analysis of free fatty acid pools in drought-stressed leaves shows an increase in the relative amounts of trans-3-hexadecenoic acid at the beginning of the treatment followed by a progressive accumulation of linoleic and linolenic acids. The possible roles of AtPAT IIA in lipid signaling and membrane degradation under water deficit are discussed. [source] Relative contributions of nine genes in the pathway of histidine biosynthesis to the control of free histidine concentrations in Arabidopsis thalianaPLANT BIOTECHNOLOGY JOURNAL, Issue 6 2009Jonathan D. Rees Summary Despite the functional importance of histidine (His) as an essential amino acid in proteins and as a metal-coordinating ligand, comparatively little is known about the regulation of its biosynthesis in plants and the potential for metabolic engineering of this pathway. To investigate the contribution of different steps in the pathway to overall control of His biosynthesis, nine His biosynthetic genes were individually over-expressed in Arabidopsis thaliana to determine their effects on free amino acid pools. Constitutive, CaMV 35S -driven over-expression of the cDNAs encoding either isoform of ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme in the pathway, was sufficient to increase the pool of free His by up to 42-fold in shoot tissue of Arabidopsis, with negligible effect on any other amino acid. In contrast, over-expression of cDNAs for seven other enzymes in the biosynthetic pathway had no effect on His content, suggesting that control of the pool of free His resides largely with ATP-PRT activity. Over-expression of ATP-PRT and increased His content had a negative pleiotropic effect on plant biomass production in 35S:PRT1 lines, but this effect was not observed in 35S:PRT2 lines. In the presence of 100 µM Ni, which was inhibitory to wild-type plants, a strong positive correlation was observed between free His content and biomass production, indicating that the metabolic cost of His overproduction was outweighed by the benefit of increased tolerance to Ni. His-overproducing plants also displayed somewhat elevated tolerance to Co and Zn, but not to Cd or Cu, indicating chemical selectivity in intracellular metal binding by His. [source] |