Acid Media (acid + media)

Distribution by Scientific Domains


Selected Abstracts


Kinetics and Mechanism of Oxidation of Fe2+ by the Tris(biguanide)manganese(IV) Ion in Aqueous Acid Media

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2004
Basab Bijayi Dhar
Abstract Tris(biguanide)manganese(IV), [Mn(LH2)3]4+ (LH2 = biguanide, C2N5H7), quantitatively oxidises Fe2+ to Fe3+ and is itself reduced to Mn2+ with almost quantitative (> 95%) release of biguanide. The reaction rate strongly depends on added Fe3+; in the presence of externally added Fe3+, the reaction shows a clear first-order dependence in [MnIV], whereas in the absence of any added Fe3+, an initial quick loss of MnIV is associated with a subsequent very sluggish decay. Two consecutive one-electron transfer inner-sphere steps are proposed for the entire redox process where [Mn(LH2)3]3+, the initial one-electron-reduced product of MnIV, is believed to be a steady-state intermediate. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Rearrangements of Epoxides of Linalool and Nerolidyl Acetate in Acid Media.

CHEMINFORM, Issue 47 2002
T. M. Khomenko
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica

FEMS YEAST RESEARCH, Issue 1 2010
Thomas Desfougères
Abstract The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2 -,-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol. [source]


Kinetic study of the nitrosation of 1,3-dialkylureas in aqueous-perchloric acid medium

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 5 2004
Guillermo González-Alatorre
The kinetics of the nitrosation of 1,3-dimethyl (DMU), 1,3-diethyl (DEU), 1,3-dipropylurea (DPU), 1,3-dibuthyl (DBU), and 1,3-diallylurea (DAU) were studied in a conventional UV/vis spectrophotometer in aqueous-perchloric acid media. The kinetic study was carried out using the initial rate method. The reaction rate observed was where Ka is the acidity constant of nitrous acid. The diureas exhibited the reactivity order DMU , DEU > DPU > DAU, which can be interpreted as a function of the steric impediment generated by the R alkyl group in the rate controlling step. A probable relationship between both the chemical reactivity and structure of the nitrosable substrate with the biological activity of the N-nitroso compounds generated is proposed. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 273,279, 2004 [source]


Investigation of the electropolymerization of o -toluidine and p -phenylenediamine and their electrocopolymerization by in situ ultraviolet,visible spectroelectrochemistry

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Guirong Zhang
Abstract Under the conditions of potentiostatic electrolysis, the electropolymerization of o -toluidine (OT) and para -phenylenediamine (PPDA) and the electrocopolymerization between OT and PPDA on an indium tin oxide (ITO) conductive glass electrode at potentials of 0.7, 0.8, and 0.9 V were studied in detail by in situ ultraviolet,visible (UV,vis) spectrometry in 0.5 mol/L sulfuric acid media. It was shown that both OT and PPDA could be electropolymerized on the ITO electrode, which depended on the applied electrolysis potential and the concentration of the monomer. Furthermore, in situ UV,vis spectra indicated that the electrocopolymerization between OT and PPDA could happen. The presence of PPDA not only promoted polymerization but also accelerated polymerization, which was attributed to the formation of an intermediate result from the coupling of PPDA and the toluidine monomer cation radical. PPDA could be incorporated into the copolymer to make the copolymer have a phenazine or phenazine-like cyclic structure, which was proven by the reflectance Fourier transform infrared spectra of the polymer and copolymer. The scanning electron microscopy morphology images of the polymers obtained showed that, in addition to accelerating polymerization, PPDA also could change the method of nucleation for the polymer to make the copolymer possess a fibrous surface morphology. The diameter of the fibroid copolymer was about 100 nm, and the length of that reached about 1000 nm. In the article, a newer concerned mechanism of copolymerization was proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Ozonation of vinasse in acid and alkaline media

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2003
MA Martín Santos
Abstract The production of ethanol by fermentation and subsequent distillation generates wastewater known as ,vinasse'. This waste is highly polluting on account of its high organic load and antibacterial activity,which arises from the presence of phenolic compounds that reduce the efficiency of the detoxification treatments best suited to this type of waste (eg anaerobic digestion). This can be avoided by using a pre-treatment based on a chemical oxidant (ozone) at an acid or alkaline pH. Ozonation in acid media provides more selective elimination of phenolic compounds and a more readily biodegradable waste (ie an increased BOD5/COD ratio). Copyright © 2003 Society of Chemical Industry [source]


Synthesis and characterization of polyaniline doped with organic acids

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2004
Milind V. Kulkarni
Abstract Spectroscopic [UV,visible and Fourier transform IR (FTIR)] and thermal properties of chemically synthesized polyanilines are found to be affected by varying the protonation media (acetic, citric, oxalic, and tartaric acid). The optical spectra show the presence of a greater fraction of fully oxidized insulating pernigraniline phase in polyaniline doped with acetic acid. In contrast, the selectivity in the formation of the conducting phase is higher in oxalic acid as a protonic acid media. The FTIR spectra of these polymers reveal a higher ratio of the relative intensities of the quinoid to benzenoid ring modes in acetic acid doped polyaniline. Scanning electron micrographs revealed a sponge-like structure derived from the aggregation of the small granules in acetic acid and oxalic acid doped polyaniline. A three-step decomposition pattern is observed in all the polymers, regardless of the protonic acid used for the doping. The second step loss related to the loss of dopant is found to be higher in the oxalic acid doped polymer. In accordance with these results the conductivity is also found to be higher in oxalic acid doped material. The temperature dependent conductivity measurements show the thermal activated behavior in all the polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2043,2049, 2004 [source]


Effect of acids on in situ polyaniline film formation

POLYMER INTERNATIONAL, Issue 8 2004
Prof MM Ayad
Abstract The chemical oxidation of aniline with ammonium persulfate (APS) to form polyaniline (PANI) films has been studied in different aqueous acid media such as sulfuric, nitric, phosphoric and acetic acids. A comparison was made between the yields of PANI film deposition during the polymerization from these media with the corresponding one obtained previously from aqueous HCl solution. The degradation of the formed PANI films at the beginning of polymerization obtained at the higher concentrations of HCl is absent when the other acids under consideration were used. The effect of acid concentration on the yield and growth rate of the PANI film was studied. The variation in the yield and growth rate of the polymer films at different acid concentrations was explained on the basis of the electrostatic repulsion and the screening effects. Copyright © 2004 Society of Chemical Industry [source]


Metabolic Carbon Fluxes and Biosynthesis of Polyhydroxyalkanoates in Ralstonia eutropha on Short Chain Fatty Acids

BIOTECHNOLOGY PROGRESS, Issue 4 2004
Jian Yu
Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha,a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. [source]


Facile High-Yield Synthesis of Polyaniline Nanosticks with Intrinsic Stability and Electrical Conductivity

CHEMISTRY - A EUROPEAN JOURNAL, Issue 33 2008
Xin-Gui Li Prof.
Abstract Chemical oxidative polymerization at 15,°C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2,M HNO3 and 0.5,M H2SO4 as acid media are about 40 and 300,nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2,M HNO3) exhibit the highest conductivity of 2.23,S,cm,1 and the highest yield of 80.7,%. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2,wt,%, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262,000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity. [source]


The Reaction of o -Alkynylarene and Heteroarene Carboxaldehyde Derivatives with Iodonium Ions and Nucleophiles: A Versatile and Regioselective Synthesis of 1H -Isochromene, Naphthalene, Indole, Benzofuran, and Benzothiophene Compounds

CHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2006
José Barluenga Prof. Dr.
Abstract The reaction of o -alkynylbenzaldehydes 1 with different alcohols, silylated nucleophiles 5, electron-rich arenes 10, and heteroarenes 12 in the presence of the reagent IPy2BF4, at room temperature, gave functionalized 4-iodo-1H -isochromenes 2, 6, 11, and 13 in a regioselective manner. When alkynes 16 and alkenes 19 and 20 were used as nucleophiles, a regioselective benzannulation reaction took place to form 1-iodonaphthalenes 17 and 1-naphthyl ketones 18, respectively. Moreover, the latter process has been adapted to accomplish the synthesis of indole, benzofuran, and benzothiophene derivatives (23, 27, and 28, respectively). The three patterns of reactivity observed for the o -alkynylbenzaldehyde derivatives with IPy2BF4 stem from a common iodinated isobenzopyrylium ion intermediate, A, that evolves in a different way depending on the nucleophile present in the reaction medium. A mechanism is proposed and the different reaction pathways observed as a function of the type of nucleophile are discussed. Furthermore, the reaction of the o -hexynylbenzaldehyde 1,b with styrene was monitored by NMR spectroscopy. Compound III, a resting state for the common intermediate in the absence of acid, has been isolated. Its evolution in acid media has been also tested, thereby providing support to the proposed mechanism. [source]