Acid Identity (acid + identity)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Acid Identity

  • amino acid identity


  • Selected Abstracts


    COMPLETE NUCLEOTIDE SEQUENCE OF SPHEROIDIN GENES OF CALLIPTAMUS IT ALICUS ENTOMOPOXVIRUS(CIEPV) AND GOMPHOCERUS SIBIRICUS ENTOMOPOXVIRUS(GSEPV)

    INSECT SCIENCE, Issue 3 2004
    Yong-dan Li
    Abstract, The spheroidin genes of Calliptamus italicus entomopoxvirus (CiEPV) and Gomphocerus sibiricus entomopoxvirus (GsEPV) were obtained by PCR, and the fragments were cloned, se-quenced and analyzed. The CiEPV and GsEPV spheroidin genes respectively harbored ORFs of 2 922 bps and 2 967 bps that were capable of coding polypeptides of 109.2 and 111.1 kDa. Computer analysis indicated that CiEPV and GsEPV spheroidins shared less than 20% amino acid identities with lepidopteran AmEPV and coleopteran AcEPV spheroidins, but more than 80% amino acid identities with orthopteran OaEPV, MsEPV and AaEPV spheroidins. The CiEPV and GsEPV spheroidins respectively contained 19 and 21 cysteine residues that were particularly abundant at the C-termini, as is the case with those of the other orthopteran EPV spheroidins. The numbers and locations of the cysteine residues of the spheroidins were most similar to those of the spheroidins of EPVs that are virulent on the same insect orders. The promoter regions of the two spheroidin genes were highly conserved (99%) among the orthopteran EPVs and also contained the typical very A+T rich and TAAATG signal mediating transcription of poxvirus late genes. We also sequenced an incomplete ORF downstream of the pheroidin gene of CiEPV and GsEPV. The ORF was in the opposite direction to the spheroidin gene and was homologous to MSV072 putative protein of MsEPV. [source]


    Use of Cr K, radiation to enhance the signal from anomalous scatterers including sulfur

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-2 2000
    Witek Kwiatkowski
    The anomalous signals from scatterers such as sulfur (S) and arsenic (As) were compared in diffraction data sets collected from an X-ray source with three different targets, Au, Cu and Cr, on a multi-target rotating anode. HIV-1 integrase crystals served as the test case for this study. The crystalline specimen of HIV-1 integrase contains in each protein molecule two As atoms, each covalently bound to a cysteine S atom, and two additional S atoms derived from methionine. It was found that the Cr K, radiation gave the clearest peaks in anomalous difference Fourier maps, although the signal-to-noise ratios of the anomalous signal for the Cu K, and Cr K, data were similar but better than that for Au L,. This result was in spite of the fourfold higher flux from the Cu anode versus the Cr anode. For all three X-ray wavelengths, anomalous difference Fourier maps calculated with bias-removed phases derived from the known atomic model revealed clear peaks at the two As sites. However, only in the map calculated using the Cr K, data were both peaks of the expected ellipsoidal shape, enveloping the As atom and the adjacent S atom. None of the S sites was apparent in difference maps calculated using the Au L, data. The ability to enhance the S-derived anomalous signal using Cr K, radiation has particularly useful applications in the structure determination of proteins, for example in resolving ambiguities in the chain tracing of a protein with numerous disulfide bonds and in assigning amino acid identities. Additionally, anomalous difference Patterson maps calculated from the Cr K, data were sufficiently clear to identify the As-related peaks. These results form the groundwork for in-house phase determination with the multi-wavelength anomalous diffraction method. [source]


    Characterization of alternatively spliced transcripts encoding heat shock transcription factor in cultured cells of the cabbage armyworm, Mamestra brassicae

    ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 1 2010
    Shoji Sonoda
    Abstract A gene encoding heat shock transcription factor (HSF) was cloned and sequenced from cultured cells of the cabbage armyworm, Mamestra brassicae. The cDNA potentially encoded a 699-aa protein, with a calculated molecular weight of 77.8,kDa. Deduced amino acid identities to HSFs from Aedes aegypti and Drosophila melanogaster were 36 and 34%, respectively. Analysis of the genomic DNA revealed eight exons and three optional exons: a, b, and c. Exon a contained a premature in-frame stop codon that would generate a truncated protein. When the cells were exposed to high temperature or cadmium, no particular alternative transcripts showed significant up- or down-regulated expression relative to the total amount of the transcripts. These results suggest that alternative splicing may not be a principal mechanism for regulation of M. brassicae HSF gene expression in response to heat shock and cadmium. © 2009 Wiley Periodicals, Inc. [source]


    Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevis

    DEVELOPMENTAL DYNAMICS, Issue 3 2005
    Teun P. De Boer
    Abstract Connexin-containing gap junctions play an essential role in vertebrate development. More than 20 connexin isoforms have been identified in mammals. However, the number identified in Xenopus trails with only six isoforms described. Here, identification of a new connexin isoform from Xenopus laevis is described. Connexin40.4 was found by screening expressed sequence tag databases and carrying out polymerase chain reaction on genomic DNA. This new connexin has limited amino acid identity with mammalian (<50%) connexins, but conservation is higher (,62%) with fish. During Xenopus laevis development, connexin40.4 was first expressed after the mid-blastula transition. There was prominent expression in the presomitic paraxial mesoderm and later in the developing somites. In adult frogs, expression was detected in kidney and stomach as well as in brain, heart, and skeletal muscle. Ectopic expression of connexin40.4 in HEK293 cells, resulted in formation of gap junction like structures at the cell interfaces. Similar ectopic expression in neural N2A cells resulted in functional electrical coupling, displaying mild, asymmetric voltage dependence. We thus cloned a novel connexin from Xenopus laevis, strongly expressed in developing somites, with no apparent orthologue in mammals. Developmental Dynamics 233:864,871, 2005. © 2005 Wiley-Liss, Inc. [source]


    New alk genes detected in Antarctic marine sediments

    ENVIRONMENTAL MICROBIOLOGY, Issue 3 2009
    Emanuele Kuhn
    Summary Alkane monooxygenases (Alk) are the key enzymes for alkane degradation. In order to understand the dispersion and diversity of alk genes in Antarctic marine environments, this study analysed by clone libraries the presence and diversity of alk genes (alkB and alkM) in sediments from Admiralty Bay, King George Island, Peninsula Antarctica. The results show a differential distribution of alk genes between the sites, and the predominant presence of new alk genes, mainly in the pristine site. Sequences presented 53.10,69.60% nucleotide identity and 50.90,73.40% amino acid identity to alkB genes described in Silicibacter pomeroyi, Gordonia sp., Prauserella rugosa, Nocardioides sp., Rhodococcus sp., Nocardia farcinica, Pseudomonas putida, Acidisphaera sp., Alcanivorax borkumensis, and alkM described in Acinetobacter sp. This is the first time that the gene alkM was detected and described in Antarctic marine environments. The presence of a range of previously undescribed alk genes indicates the need for further studies in this environment. [source]


    Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters

    ENVIRONMENTAL MICROBIOLOGY, Issue 2 2007
    Haewon Park
    Summary A recent report of a novel carbonic anhydrase (CDCA1) with Cd as its metal centre in the coastal diatom Thalassiosira weissflogii has led us to search for the occurrence of this Cd enzyme (CDCA) in other marine phytoplankton and in the environment. Using degenerate primers designed from the published sequences from T. weissflogii and a putative sequence in the genome of Thalassiosira pseudonana, we show that CDCA is widespread in diatom species and ubiquitous in the environment. All detected genes share more than 64% amino acid identity with the CDCA of T. pseudonana. Analysis of the amino acid sequence of CDCA shows that the putative Cd binding site resembles that of beta-class carbonic anhydrases (CAs). The prevalence of CAs in diatoms that presumably contain Cd at their active site probably reflects the very low concentration of Zn in the marine environment and the difficulty in acquiring inorganic carbon for photosynthesis. The cdca primers developed in this study should be useful for detecting cdca genes in the field, and studying the conditions under which they are expressed. [source]


    A cocaine insensitive chimeric insect serotonin transporter reveals domains critical for cocaine interaction

    FEBS JOURNAL, Issue 16 2002
    Sumandeep K. Sandhu
    Serotonin transporters are key target sites for clinical drugs and psychostimulants, such as fluoxetine and cocaine. Molecular cloning of a serotonin transporter from the central nervous system of the insect Manduca sexta enabled us to define domains that affect antagonist action, particularly cocaine. This insect serotonin transporter transiently expressed in CV-1 monkey kidney cells exhibits saturable, high affinity Na+ and Cl, dependent serotonin uptake, with estimated Km and Vmax values of 436 ± 19 nm and 3.8 ± 0.6 × 10,18 mol·cell·min,1, respectively. The Manduca high affinity Na+/Cl, dependent transporter shares 53% and 74% amino acid identity with the human and fruit fly serotonin transporters, respectively. However, in contrast to serotonin transporters from these two latter species, the Manduca transporter is inhibited poorly by fluoxetine (IC50 = 1.23 µm) and cocaine (IC50 = 12.89 µm). To delineate domains and residues that could play a role in cocaine interaction, the human serotonin transporter was mutated to incorporate unique amino acid substitutions, detected in the Manduca homologue. We identified a domain in extracellular loop 2 (amino acids 148,152), which, when inserted into the human transporter, results in decreased cocaine sensitivity of the latter (IC50 = 1.54 µm). We also constructed a number of chimeras between the human and Manduca serotonin transporters (hSERT and MasSERT, respectively). The chimera, hSERT1,146/MasSERT106,587, which involved N-terminal swaps including transmembrane domains (TMDs) 1 and 2, was remarkably insensitive to cocaine (IC50 = 180 µm) compared to the human (IC50 = 0.431 µm) and Manduca serotonin transporters. The chimera MasSERT1,67/hSERT109,630, which involved only the TMD1 swap, showed greater sensitivity to cocaine (IC50 = 0.225 µm) than the human transporter. Both chimeras showed twofold higher serotonin transport affinity compared to human and Manduca serotonin transporters. Our results show TMD1 and TMD2 affect the apparent substrate transport and antagonist sensitivity by possibly providing unique conformations to the transporter. The availability of these chimeras facilitates elucidation of specific amino acids involved in interactions with cocaine. [source]


    Phylogenetic reconstruction of Gram-positive organisms based on comparative sequence analysis of molecular chaperones from the ruminal microorganism Ruminococcus flavefaciens FD-1

    FEMS MICROBIOLOGY LETTERS, Issue 1 2003
    Dionysios A. Antonopoulos
    Abstract Primers designed on the basis of nucleotide sequences conserved in DnaK and GroEL from Gram-positive organisms were used to PCR amplify internal regions of the cognate genes from the anaerobic ruminal cellulolytic bacterium Ruminococcus flavefaciens FD-1. Genome walking was then utilized to elucidate the remainder of the sequences in addition to upstream and downstream regions. The full sequence of the gene encoding the GroES protein (groES) was found directly upstream from groEL. The deduced amino acid sequence of the groEL gene showed the highest homology with the amino acid sequence of the Clostridium thermocellum GroEL protein (72% amino acid identity). Similarly, translation of the groES nucleotide sequence showed highest homology to the C. thermocellum GroES protein (61% amino acid identity). Analysis of the upstream region of this chaperonin operon revealed a CIRCE regulatory element 45 bp upstream from the putative start of the groES ORF. The deduced amino acid sequence of the putative dnaK gene showed the highest homology with the amino acid sequence of the Clostridium acetobutylicum DnaK protein (68% amino acid identity). Phylogenetic analyses based on the translated sequences reiterate this relationship between R. flavefaciens and the Clostridia. However, when the nucleotide sequences of Gram-positive organisms are analyzed, a different topology occurs of the relationship between high- and low-G+C Gram-positive organisms to the 16S rRNA interpretation. [source]


    Oosp1 encodes a novel mouse oocyte-secreted protein

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 3 2001
    Changning Yan
    Abstract Summary: Oocyte-somatic cell communication is necessary for normal ovarian function. However, the identities of the majority of oocyte-secreted proteins remain unknown. A novel cDNA encoding mouse oocyte- secreted protein 1 (OOSP1) was identified using a modified subtractive hybridization screen. The Oosp1 cDNA encodes a 202-amino acid protein that contains a 21-amino acid signal peptide sequence, 5 putative N-linked glycosylation consensus sequences, and 6 cysteines that are predicted to form 3 disulfide bonds. OOSP1 shares amino acid identity with placental-specific protein 1 (PLAC1), a secreted protein expressed in the placenta and the ectoplacental cone. The Oosp1 mRNA is approximately 1.0 kb and is present at high levels in the oocytes of adult ovaries and at lower levels in the spleen. The mouse Oosp1 gene is 5 exons, spans greater than 16.4 kb, and localizes to chromosome 19 at a position that shares synteny with human chromosome 11q12,11q13. The identification of OOSP1 as a new oocyte-secreted protein permits future in vitro and in vivo functional analyses to define its role in ovarian folliculogenesis. genesis 31:105,110, 2001. © 2001 Wiley-Liss, Inc. [source]


    Immune activation upregulates lysozyme gene expression in Aedesaegypti mosquito cell culture

    INSECT MOLECULAR BIOLOGY, Issue 6 2000
    Y. Gao
    Abstract After stimulation with heat-killed bacteria, cultured cells from the mosquito Aedesaegypti (Aag-2 cells) secreted an induced protein with a mass of , 16 kDa that cross-reacted with antibody to chicken egg lysozyme. To investigate whether lysozyme messenger RNA is induced in bacteria-treated cells, we used polymerase chain reaction-based approaches to obtain the complete lysozyme cDNA from Aag-2 cells. The deduced protein contained 148 amino acids, including a 23 amino acid signal sequence. The calculated mass of the precursor protein is 16 965 Da, which is processed to yield a mature lysozyme of 14 471 Da with a calculated pI of 10.1. The lysozyme from Ae. aegypti shared 50% amino acid identity with lysozymes from Anophelesgambiae and Anophelesdarlingi, which in turn shared 70% identity between each other. Northern analysis with the lysozyme cDNA probe showed induction of a 1.3 kb messenger RNA during the first 3 h after treatment of Aag-2 cells with heat-killed bacteria, followed by maximal expression 12,36 h after treatment. Southern analysis suggested that the gene likely occurs as a single copy in the genome of Aag-2 cells. [source]


    Buffalo (Bubalus bubalis) interleukin-2: sequence analysis reveals high nucleotide and amino acid identity with interleukin-2 of cattle and other ruminants

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 4 2002
    E. Sreekumar
    Summary A 4400-bp genomic sequence and a 332-bp truncated cDNA sequence of the interleukin-2 (IL-2) gene of Indian water buffalo (Bubalus bubalis) were amplified by polymerase chain reaction and cloned. The coding sequence of the buffalo IL-2 gene was assembled from the 5, end of the genomic clone and the truncated cDNA clone. This sequence had 98.5% nucleotide identity and 98% amino acid identity with cattle IL-2. Three amino acid substitutions were observed at positions 63, 124 and 135. Comparison of the predicted protein structure of buffalo IL-2 with that of human and cattle IL-2 did not reveal significant differences. The putative amino acids responsible for IL-2 receptor binding were conserved in buffalo, cattle and human IL-2. The amino acid sequence of buffalo IL-2 also showed very high identity with that of other ruminants, indicating functional cross-reactivity. [source]


    cDNA cloning of the polymeric immunoglobulin receptor of the marsupial Macropus eugenii (tammar wallaby)

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 2 2002
    C. L. Taylor
    Summary cDNA encoding a marsupial polymeric immunoglobulin receptor (pIgR) was isolated from Macropus eugenii (tammar wallaby) mammary lymph node primarily by reverse transcriptase coupled polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. This resulted in a 5, truncated clone and, in order to obtain the full-length sequence, genomic walking PCR was utilized. The complete sequence consists of 2696 bp of cDNA and encodes a predicted polypeptide of 732 amino acids. The wallaby sequence is highly conserved in relation to the only other reported marsupial pIgR sequence, that of Trichosurus vulpecula (brushtail possum), having a nucleotide identity of 86.7% and a deduced amino acid identity of 79.9%. The wallaby nucleotide sequence also has a moderate degree of similarity with the pIgR sequences of eutherian mammals, being most similar to that of the rat, with an identity of 63.1%. At the amino acid level, in comparison to eutherian sequences, the wallaby pIgR is most similar to that of humans with an identity of 52.6%. pIgR phylogenetic trees were constructed for tammar wallaby, brushtail possum and several eutherian mammal cDNA and deduced amino acid sequences. In both DNA and protein analyses, the eutherian sequences formed a sister clade to the exclusion of the marsupial sequences, in agreement with the current view of mammalian evolution. [source]


    Analysis of the VP6 gene of human and porcine group A rotavirus strains with unusual subgroup specificities

    JOURNAL OF MEDICAL VIROLOGY, Issue 1 2009
    Aksara Thongprachum
    Abstract Full-length VP6 amino acid sequences of human and porcine rotaviruses with subgroup (SG) (I,+,II) and SG non-(I,+,II) were analyzed in comparison with those of SG I and SG II. In human rotaviruses, the strains in the same SG shared a very high degree of amino acid identity, ranging from 97.4% to 99.4% for SG I, 95.9% to 100% for SG II, and 99.4% to100% for SG non-(I,+,II), while viruses in different SGs shared somewhat lower sequence identity at 90.4,93.1%. Conserved amino acids that distinguished the strains of SG I from SG II were observed at 21 positions. The viruses with SG non-(I,+,II) shared sequence identity with SG II as high as 97.2,99.7%, suggesting that they belonged to genogroup II. Similarly, porcine rotaviruses in the same SG shared 96.4,99.7% for SG I, 98.2,100% for SG II, 97.4,100% for SG (I,+,II), and 96.2,99.7% for SG non-(I,+,II), while strains in different SGs shared sequence identity ranging from 91.9% to 94.4%. Interestingly, the strains with SG (I,+,II) and SG non-(I,+,II) shared a high degree of sequence identity with SG I, at 96.4,100% and 94.7,99.7% respectively, suggesting that they are related to porcine SG I strains. The conserved amino acids which distinguished SG I from SG II were observed at 13 positions. The strains with SG I, SG (I,+,II), and SG non-(I,+,II) showed identical amino acid residues at these positions. Phylogenetic analysis strongly supported the findings of the sequence analysis. J. Med. Virol. 81:183,191, 2009. © 2008 Wiley-Liss, Inc. [source]


    Biochemical characterization of human glutamate carboxypeptidase III

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2007
    Klára Hlouchová
    Abstract Human glutamate carboxypeptidase II (GCPII) is a transmembrane metallopeptidase found mainly in the brain, small intestine, and prostate. In the brain, it cleaves N -acetyl- l -aspartyl-glutamate, liberating free glutamate. Inhibition of GCPII has been shown to be neuroprotective in models of stroke and other neurodegenerations. In prostate, it is known as prostate-specific membrane antigen, a cancer marker. Recently, human glutamate carboxypeptidase III (GCPIII), a GCPII homolog with 67% amino acid identity, was cloned. While GCPII is recognized as an important pharmaceutical target, no biochemical study of human GCPIII is available at present. Here, we report the cloning, expression, and characterization of recombinant human GCPIII. We show that GCPIII lacks dipeptidylpeptidase IV-like activity, its activity is dependent on N -glycosylation, and it is effectively inhibited by several known inhibitors of GCPII. In comparison to GCPII, GCPIII has lower N -acetyl- l -aspartyl-glutamate-hydrolyzing activity, different pH and salt concentration dependence, and distinct substrate specificity, indicating that these homologs might play different biological roles. Based on a molecular model, we provide interpretation of the distinct substrate specificity of both enzymes, and examine the amino acid residues responsible for the differences by site-directed mutagenesis. These results may help to design potent and selective inhibitors of both enzymes. [source]


    A bacterial conjugation machinery recruited for pathogenesis

    MOLECULAR MICROBIOLOGY, Issue 5 2003
    Anja Seubert
    Summary Type IV secretion systems (T4SS) are multicomponent transporters of Gram-negative bacteria adapted to functions as diverse as DNA transfer in bacterial conjugation or the delivery of effector proteins into eukaryotic target cells in pathogenesis. The generally modest sequence conservation between T4SS may reflect their evolutionary distance and/or functional divergence. Here, we show that the establishment of intraerythrocytic parasitism by Bartonella tribocorum requires a putative T4SS, which shares an unprecedented level of sequence identity with the Trw conjugation machinery of the broad-host-range antibiotic resistance plasmid R388 (up to 80% amino acid identity for individual T4SS components). The highly conserved T4SS loci are collinear except for the presence of numerous tandem gene duplications in B. tribocorum, which mostly encode variant forms of presumed surface-exposed pilus subunits. Conservation is not only structural, but also functional: R388 mutated in either trwD or trwH encoding essential T4SS components could be trans -complemented for conjugation by the homologues of the B. tribocorum system. Conservation also includes the transcription regulatory circuit: both T4SS loci encode a highly homologous and interchangeable KorA/KorB repressor system that negatively regulates the expression of all T4SS components. This striking example of adaptive evolution reveals the capacity of T4SS to assume dedicated functions in either DNA transfer or pathogenesis over rather short evolutionary distance and implies a novel role for the conjugation systems of widespread broad-host-range plasmids in the evolution of bacterial pathogens. [source]


    Towards a ZP-based contraceptive for marsupials: Comparative analysis and developmental expression of marsupial ZP genes

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 12 2007
    Carmen A. McCartney
    Abstract Fertility control in the form of a zona pellucida (ZP)-based immunocontraceptive has shown potential as a humane form of control for overabundant marsupials including the brushtail possum and macropods. Further refinement and development of a ZP-based vaccine requires detailed knowledge of the protein structure and expression in order to ensure maximum efficacy and specificity. Sequencing and comparative analysis of the ZP3 protein from three marsupial orders in this study found a high overall level of conservation; within order Diprotodontia, the ZP3 protein is 86.9,98.9% identical. ZP3 identity falls to 56.6,57.2%, when the grey, short-tailed opossum (a Didelphimorphian) is compared to dasyurid and diprotodontan marsupials. This is similar to its amino acid identity with ZP3 from eutherian species (50.7,52.8%). Comparison of a 21 amino acid epitope in marsupial ZP3 that has shown contraceptive effects, reveals 95,100% identity between the four macropodid species, 81,86% amino acid identity between brushtail possum and the macropods and 67,71% identity between the diprotodontans and the fat-tailed dunnart (a dasyurid). This is comparable to the level of identity between related eutherian mammals. The expression pattern of three ZP genes during brushtail possum and tammar wallaby pouch young development was examined by RT-PCR. This analysis of ZP gene expression has confirmed that ZP mRNA transcription begins in the ovary during pouch young development by about 51 days of age. The presence of ZP transcripts at this stage in pouch young development suggests that marsupial ZP gene transcription begins before the onset of follicular development. Mol. Reprod. Dev. 74: 1581,1589, 2007. © 2007 Wiley-Liss, Inc. [source]


    Identification and molecular analysis of candidate genes homologous to HcrVf genes for scab resistance in apple

    PLANT BREEDING, Issue 1 2009
    A. Boudichevskaia
    Abstract The genetic locus for resistance to apple scab most frequently used in apple breeding is Vf, derived from Malus floribunda 821. For the Vf locus a cluster of four resistance gene paralogs (called as HcrVf genes) encoding receptor-like proteins (RLP) with similarity to the tomato Cf resistance genes is known. Based on published sequences for HcrVf1 and HcrVf2 PCR primers were designed from the domain B and the variable leucine-rich repeat (LRR) C1 subdomain. PCR products with high amino acid identity (85,100%) to HcrVf1 and HcrVf2 were obtained not only from M. floribunda 821 and Vf cultivars but also from other apple scab resistance sources, such as ,Russian Seedling' R12740-7A (Vr resistance) or ,Antonovka polutorafuntovaya' (VA resistance). A series of 13 HcrVf candidate genes have been partly cloned from the PCR fragments spanning N-terminal LRRs 20,30. A considerable number of amino acid exchanges within the solvent-exposed xxLxLxx structural motives were detected among the homologous sequences. Expression analyses and mapping focused on a selected Vf- homologous candidate gene (called Vf2ARD) identified in resistant Malus genotypes known for carrying other scab resistance genes than Vf. RT-PCR experiments showed that Vf2ARD is expressed under pathogen-free conditions. The results of a quantitative PCR-based transcription profiling suggest that this gene is scab-inducible in some resistant cultivars. Vf2ARD has been mapped on linkage group LG 1. It is separated from the Vf gene cluster with a genetic distance of about 2 cM and might be a member of a second Vf - like locus on apple linkage group LG 1. [source]


    Characterization of a strain of Apple stem grooving virus in Actinidia chinensis from China

    PLANT PATHOLOGY, Issue 3 2003
    G. R. G. Clover
    A new strain of Apple stem grooving virus (ASGV) has been identified in Actinidia chinensis imported from China. The leaves of these plants exhibited a variety of symptoms including interveinal mottling, chlorotic mosaics and ringspots. Capillovirus-like particles were observed under the electron microscope, and the virus could be mechanically transmitted to a range of herbaceous indicators. The virus was detected using ELISA with antisera raised against ASGV. Sequencing of the virus revealed that it had more than 95% amino acid identity with ASGV in the putative coat and movement proteins. From the morphological, transmission, serological and molecular evidence, it was concluded that the virus is a strain of ASGV. It is not known how this strain of ASGV is transmitted, other than by grafting, nor is it known what effect the virus has on the growth of infected vines. The Actinidia -infecting strain of ASGV does not occur in New Zealand, and infected plants will not be released from quarantine. The detection methods used during the research will assist quarantine and the safe movement of breeding material. [source]


    Transcription of plastid genes is modulated by two nuclear-encoded , subunits of plastid RNA polymerase in the moss Physcomitrella patens

    THE PLANT JOURNAL, Issue 4 2007
    Yukihiro Kabeya
    Summary In general, in higher plants, the core subunits of a bacterial-type plastid-encoded RNA polymerase (PEP) are encoded by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes. However, an rpoA gene is absent from the moss Physcomitrella patens plastid genome, although the PpRpoA gene (renamed PpRpoA1) nuclear counterpart is present in the nuclear genome. In this study, we identified and characterized a second gene encoding the plastid-targeting , subunit (PpRpoA2). PpRpoA2 comprised 525 amino acids and showed 59% amino acid identity with PpRpoA1. Two PpRpoA proteins were present in the PEP active fractions separated from the moss chloroplast lysate, confirming that both proteins are , subunits of PEP. Northern blot analysis showed that PpRpoA2 was highly expressed in the light, but not in the dark, whereas PpRpoA1 was constitutively expressed. Disruption of the PpRpoA1 gene resulted in an increase in the PpRpoA2 transcript level, but most plastid gene transcript levels were not significantly altered. This indicates that transcription of most plastid genes depends on PpRpoA2-PEP rather than on PpRpoA1-PEP. In contrast, the transcript levels of petN, psbZ and ycf3 were altered in the PpRpoA1 gene disruptant, suggesting that these are PpRpoA1-PEP-dependent genes. These observations suggest that plastid genes are differentially transcribed by distinct PEP enzymes with either PpRpoA1 or PpRpoA2. [source]


    Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis

    THE PLANT JOURNAL, Issue 2 2006
    Jörg Ziegler
    Summary Plants of the order Ranunculales, especially members of the species Papaver, accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum, 69 show increased expression in morphinan alkaloid-containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7- epi -salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo-keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism. [source]


    Isolation of a porcine UDP-GalNAc transferase cDNA mapping to the region of the blood group EAA locus on pig chromosome 1

    ANIMAL GENETICS, Issue 3 2001
    E. Meijerink
    In our studies of the genes constituting the porcine A0 blood group system, we have characterized a cDNA, encoding an ,(1,3)N-acetylgalactosaminyltransferase, that putatively represents the blood group A transferase gene. The cDNA has a 1095-bp open reading frame and shares 76.9% nucleotide and 66.7% amino acid identity with the human ABO gene. Using a somatic cell hybrid panel, the cDNA was assigned to the q arm of pig chromosome 1, in the region of the erythrocyte antigen A locus (EAA), which represents the porcine blood group A transferase gene. The RNA corresponding to our cDNA was expressed in the small intestinal mucosae of pigs possessing EAA activity, whereas expression was absent in animals lacking this blood group antigen. The UDP-N-acetylgalactosamine (UDP-GalNAc) transferase activity of the gene product, expressed in Chinese hamster ovary (CHO) cells, was specific for the acceptor fucosyl- ,(1,2)galactopyranoside; the enzyme did not use phenyl- , - D -galactopyranoside (phenyl- , -D-Gal) as an acceptor. Because the ,(1,3)GalNAc transferase gene product requires an ,(1,2)fucosylated acceptor for UDP-GalNAc transferase activity, the ,(1,2)fucosyltransferase gene product is necessary for the functioning of the ,(1,3)GalNAc transferase gene product. This mechanism underlies the epistatic effect of the porcine S locus on expression of the blood group A antigen. Abbreviations: CDS: coding sequence; CHO: Chinese Hamster Ovary; EAA: erythrocyte antigen A; FCS: foetal calf serum; Fuc,(1,2)Gal: fucosyl- ,(1,2)galactopyranoside; Gal: galactopyranoside; GGTA1: Gal,(1,3)Gal transferase; PCR: polymerase chain reaction; phenyl- , -D-Gal: phenyl- , - D -galactopyranoside; R: Gal,1-4Glc,1-1Cer; UDP-GalNAc: uridine diphosphate N-acetylgalactosamine [source]


    Comparison of two acetylcholinesterase gene cDNAs of the lesser mealworm, Alphitobius diaperinus, in insecticide susceptible and resistant strains

    ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2008
    Toshinori Kozaki
    Abstract Two cDNAs encoding different acetylcholinesterase (AChE) genes (AdAce1 and AdAce2) were sequenced and analyzed from the lesser mealworm, Alphitobius diaperinus. Both AdAce1 and AdAce2 were highly similar (95 and 93% amino acid identity, respectively) with the Ace genes of Tribolium castaneum. Both AdAce1 and AdAce2 have the conserved residues characteristic of AChE (catalytic triad, intra-disulfide bonds, and so on). Partial cDNA sequences of the Alphitobius Ace genes were compared between two tetrachlorvinphos resistant (Kennebec and Waycross) and one susceptible strain of beetles. Several single nucleotide polymorphisms (SNPs) were detected, but only one non-synonymous mutation was found (A271S in AdAce2). No SNPs were exclusively found in the resistant strains, the A271S mutation does not correspond to any mutations previously reported to alter sensitivity of AChE to organophosphates or carbamates, and the A271S was found only as a heterozygote in one individual from one of the resistant A. diaperinus strains. This suggests that tetrachlorvinphos resistance in the Kennebec and Waycross strains of A. diaperinus is not due to mutations in either AChE gene. The sequences of AdAce1 and AdAce2 provide new information about the evolution of these important genes in insects. Arch Insect Biochem Physiol. © 2007 Wiley-Liss, Inc. [source]


    Cloning and characterization of two cytochrome P450 CYP6AX1 and CYP6AY1 cDNAs from Nilaparvata lugens Stål (Homoptera: Delphacidae)

    ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2007
    Zhifan Yang
    Abstract Two full-length P450 cDNAs, CYP6AX1 and CYP6AY1, were cloned from the brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae). Both CYP6AX1 and CYP6AY1 are typical microsomal P450s and their deduced amino acid sequences share common characteristics with other members of the insect P450 CYP6 family. CYP6AX1 and CYP6AY1 show the highest percent identity (36%) of amino acid to each other; both of them have 31,33% amino acid identity with CYP6B1 from Papilio polyxenes (Lepidoptera: Papilionidae), CYP6B4 from Papilio glaucus (Lepidoptera: Papilionidae), and CYP6B8 from Helicoverpa zea (Lepidoptera: Noctuidae). Phylogenetic analysis showed the clustering of CYP6AX1 and CYP6AY1 was in the clade including CYP6AE1 from Depressaria pastinacella (Lepidoptera: Oecophoridae) and the CYP6B family members from Helicoverpa and Papilio species. Northern blot analysis revealed that both of the P450s were induced by the resistant rice variety B5 (Oryza sativa L), and CYP6AY1 was expressed at a higher level than CYP6AX1. The results suggest that more than one P450s are likely involved in metabolism of rice allelochemicals and that they are possibly important components in adaptation of Nilaparvata lugens to host rice. Arch. Insect Biochem. Physiol. 64:88,99, 2007. © 2007 Wiley-Liss, Inc. [source]