Acid Herbicides (acid + herbicide)

Distribution by Scientific Domains


Selected Abstracts


Uptake of pesticides from water by curly waterweed Lagarosiphon major and lesser duckweed Lemna minor

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2007
Renato F de Carvalho
Abstract The uptake of pesticides from water by two aquatic plants, the submersed Lagarosiphon major (Ridley) Moss and the floating duckweed Lemna minor L., was measured over periods of up to 72 h. Twelve non-ionised pesticides and analogues, chosen to span a wide range of physicochemical properties, and one analogue (3,5-D) of the phenoxyacetic acid herbicide 2,4-D were studied. Concentrations of the parent compound were determined in the plants following extraction and separation by chromatography. Quantification was by liquid scintillation counting for the 14C-labelled compounds and by high-performance liquid chromatography for the four non-radiolabelled commercial pesticides. Uptake for all compound and plant combinations had reached equilibrium by 24 h. Accumulation of compound in the plant could be described well for most non-ionised compounds by equilibration into the aqueous phase in the plant cells together with partitioning onto the plant solids, this latter process becoming dominant in Lagarosiphon for compounds with log Kow > 1 and in Lemna for compounds with log Kow > 1.8. Lipophilic compounds with log Kow > 4 were concentrated more than 100-fold on a fresh-weight basis. However, the uptake of isoproturon and chlorotoluron was up to threefold less than expected from their Kow values, and their behaviour was better explained using solvation descriptors. Uptake of the acid 3,5-D was dependent on solution pH, this compound being strongly taken up at lower pH by the process of ion trapping, as previously observed in barley roots. Aquatic vegetation can thus rapidly accumulate pesticides, and could be an important sink especially for lipophilic pesticides reaching well-vegetated waters. Copyright © 2007 Society of Chemical Industry [source]


Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detection

ELECTROPHORESIS, Issue 10 2007
Yan Xu
Abstract This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270,ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level. [source]


Rapid and sensitive determination of phosphorus-containing amino acid herbicides in soil samples by capillary zone electrophoresis with diode laser-induced fluorescence detection

ELECTROPHORESIS, Issue 23 2005
Eva Orejuela
Abstract A straightforward and sensitive method has been developed for the analysis of phosphorus-containing amino acid herbicides (glufosinate and aminomethylphosphonic acid, the major metabolite of glyphosate) in soil samples. For this purpose, the analytical features of two indocyanine fluorescent dyes, sulfoindocyanine succinimidyl ester (Cy5) and 1-ethyl-1-[5-(N -succinimidyl-oxycarbonyl)pentyl]-3,3,3,3-tetramethyl-indodicarbocyanine chloride, as labeling reagents for the determination of these herbicides by CZE with diode LIF detection were investigated. Practical aspects related to the labeling chemistry and CZE separation showed that the two probes behave similarly, Cy5 being the best choice for the determination of these herbicides on account of its higher sensitivity. The optimum procedure includes a derivatization step of the pesticides at 25°C for 30,min and direct injection to CZE analysis, which is conducted within about 14,min using ACN in the running buffer. The lowest detectable analyte concentration ranged from 0.025 to 0.18,µg/L with a precision of 3.6,5.4%. These results indicate that indocyanine fluorescence dyes are useful as rapid and sensitive labels for the determination of these herbicides when compared with typical fluorescein dyes such as FITC and 5-(4,6-dichloro- s -triazin-2-ylamino) fluorescein, because they provide faster labeling reactions even at room temperature and the excess of reagent practically does not interfere the determination. Finally, the Cy5 method was successfully applied to soil samples without a preliminary clean-up procedure, and the herbicides were measured without any interference from coexisting substances. The recoveries of these compounds in these samples at fortification levels of 100,500,ng/g were 90,93%. [source]


Combination of cationic surfactant-assisted solid-phase extraction with field-amplified sample stacking for highly sensitive analysis of chlorinated acid herbicides by capillary zone electrophoresis

ELECTROPHORESIS, Issue 18 2005
Yan Xu
Abstract This report describes a novel online field-amplified sample stacking (FASS) procedure to analyze 16 chlorinated acid herbicides. By using a poly(vinyl alcohol) (PVA)-coated capillary to reduce electroosmotic flow and introducing a methanol,water plug before sample loading, the sample injection time could be very long without loss of sample and separation efficiency. Under the optimized condition, the FASS procedure could provide great sensitivity enhancement (5000,10,000-fold) and satisfactory reproducibility (relative standard deviations of migration times less than 2.4%, relative standard deviations of peak areas less than 8.0%). Combined with cationic surfactant-assisted solid-phase extraction (CSA-SPE), the limit of detection of the herbicides ranged from 0.269 to 20.3,ppt, which are two orders lower than those of the US Environmental Protection Agency standard method 515.1. The CSA-SPE-FASS-CE method was successfully applied to the analysis of local pond water. [source]


Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 8 2010
Markus Küsters
Abstract For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12,ng/L and mean recoveries from real-world drinking water samples of 98±9, 100±16 and 101±11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission. [source]


Ionic liquids as mobile phase additives for high-performance liquid chromatography separation of phenoxy acid herbicides and phenols

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 23-24 2009
Xialin Hu
Abstract In this present study, 1-butyl-3-methylimidazolium chloride ([C4MIM]Cl), 1-octyl-3-methylimidazolium chloride ([C8MIM]Cl), and 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl) were adopted as mobile phase additives in the high performance liquid chromatography (HPLC) to simultaneously separate phenoxy acid herbicides and phenols at neutral pH. It was found that by using 20,mM of [C4MIM]Cl, baseline separation and good chromatograms for all the acid compounds were obtained on a normal reversed-phase C18 column. The retention time of the target acid compounds shortened with the increase of the alkyl chain length and the concentrations of ionic liquids, probably due to the delocalization of the positive charge on the imidazolium cation, the repulsion between chlorine ions of ionic liquids and the acid compounds, as well as the stereo-hindrance effect. The mechanism with ionic liquids as mobile additives for the separation of acid compounds was discussed. [source]