| |||
ACI Rat (aci + rat)
Selected AbstractsAtypical Fetal Prostate Development is Associated with Ipsilateral Hypoplasia of the Wolffian Ducts in the ACI RatTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2010Luke E. Hofkamp Abstract For over a half century, the ACI (August × Copenhagen) rat has been a primary model for studying renal agenesis and ipsilateral hypoplasia (IHP) of the Wolffian-derived structures (WDS). Because the ACI rat is also used as a model for prostate research, it is important to examine the relationship of IHP and urogenital sinus (UGS) development. The prostate is dependent on androgens for proper growth and differentiation. Alteration in androgen production and/or delivery to the UGS has the potential to perturbate normal development. In this study, we investigate whether the ipsilateral loss of the WDS is associated with altered prostate development. Digital images of serial-sectioned fetal ACI rat UGS were used to create three-dimensional (3-D) surface-rendered models of the developing prostate, seminal vesicle, vas deferens, and utricle on gestational day 21. The number and volume of prostate ducts developing from the UGS were calculated from the 3-D model data. Animals exhibiting IHP had a significant decrease in total fetal prostate volume (40%; P < 0.005) with significant regional specific differences when compared with normal male ACI rats. Anatomical and histological differences in the utricle, abnormal histology of the ipsilateral testes, and a truncation of the ipsilateral Wolffian ductal mesenchyme were also seen in the animals with IHP. Additional research is needed to further understand the mechanisms and consequences of IHP on prostate growth and development. Alterations to normal prenatal development of the male accessory sex organs can have important consequences for the growth and morphology of the adult gland. Anat Rec, 2010. © 2010 Wiley-Liss, Inc. [source] Atypical Fetal Prostate Development is Associated with Ipsilateral Hypoplasia of the Wolffian Ducts in the ACI RatTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2010Luke E. Hofkamp Serial section reconstruction images of the male ACI rat urogenital sinus shown from a dorso-cranial view. The image in the lower right illustrates the normal late gestation appearance of the accessory gland development, compared to the Wolffian duct ipsilateral abnormality observed in 25% of the male offspring (upper left). See Potok et al., Anatomical Record 239:747,753. [source] Atypical Fetal Prostate Development is Associated with Ipsilateral Hypoplasia of the Wolffian Ducts in the ACI RatTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2010Luke E. Hofkamp Abstract For over a half century, the ACI (August × Copenhagen) rat has been a primary model for studying renal agenesis and ipsilateral hypoplasia (IHP) of the Wolffian-derived structures (WDS). Because the ACI rat is also used as a model for prostate research, it is important to examine the relationship of IHP and urogenital sinus (UGS) development. The prostate is dependent on androgens for proper growth and differentiation. Alteration in androgen production and/or delivery to the UGS has the potential to perturbate normal development. In this study, we investigate whether the ipsilateral loss of the WDS is associated with altered prostate development. Digital images of serial-sectioned fetal ACI rat UGS were used to create three-dimensional (3-D) surface-rendered models of the developing prostate, seminal vesicle, vas deferens, and utricle on gestational day 21. The number and volume of prostate ducts developing from the UGS were calculated from the 3-D model data. Animals exhibiting IHP had a significant decrease in total fetal prostate volume (40%; P < 0.005) with significant regional specific differences when compared with normal male ACI rats. Anatomical and histological differences in the utricle, abnormal histology of the ipsilateral testes, and a truncation of the ipsilateral Wolffian ductal mesenchyme were also seen in the animals with IHP. Additional research is needed to further understand the mechanisms and consequences of IHP on prostate growth and development. Alterations to normal prenatal development of the male accessory sex organs can have important consequences for the growth and morphology of the adult gland. Anat Rec, 2010. © 2010 Wiley-Liss, Inc. [source] The influence of strain and housing on two types of spike-wave discharges in ratsGENES, BRAIN AND BEHAVIOR, Issue 1 2004U. Schridde WAG/Rij rats, a genetic model of absence epilepsy, show two types of spike-wave discharges (Type 1 and Type 2) in their EEG activity. The large interindividual variation in the expression of the phenotypes (number and mean duration of spike-wave discharges) suggests that as well as genetic, environmental factors also play a role. The aim of our study was to establish effects of strain and housing on the incidence and expression of both types of paroxysms. Therefore, WAG/Rij and ACI rats were housed from weaning in either an enriched or impoverished environment for 60 days. At three months of age the EEG of the rats was recorded for four hours to examine the effects of strain and housing on the incidence and expression of the two types of paroxysms. Generally, enriched housing led to worsening of Type 1 and Type 2 spike-wave discharges (SWD). However, the number of affected rats and the expression (number and mean duration) of Type 1 and Type 2 spike-wave discharges were differently influenced by strain and housing. This suggests that Type 1 and Type 2 spike-wave discharges are independent phenomena and that number and mean duration of these paroxysms are controlled by different mechanisms. Finally, the worsening of absence seizures after enrichment is different from what has been found for convulsive seizures. [source] Atypical Fetal Prostate Development is Associated with Ipsilateral Hypoplasia of the Wolffian Ducts in the ACI RatTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2010Luke E. Hofkamp Abstract For over a half century, the ACI (August × Copenhagen) rat has been a primary model for studying renal agenesis and ipsilateral hypoplasia (IHP) of the Wolffian-derived structures (WDS). Because the ACI rat is also used as a model for prostate research, it is important to examine the relationship of IHP and urogenital sinus (UGS) development. The prostate is dependent on androgens for proper growth and differentiation. Alteration in androgen production and/or delivery to the UGS has the potential to perturbate normal development. In this study, we investigate whether the ipsilateral loss of the WDS is associated with altered prostate development. Digital images of serial-sectioned fetal ACI rat UGS were used to create three-dimensional (3-D) surface-rendered models of the developing prostate, seminal vesicle, vas deferens, and utricle on gestational day 21. The number and volume of prostate ducts developing from the UGS were calculated from the 3-D model data. Animals exhibiting IHP had a significant decrease in total fetal prostate volume (40%; P < 0.005) with significant regional specific differences when compared with normal male ACI rats. Anatomical and histological differences in the utricle, abnormal histology of the ipsilateral testes, and a truncation of the ipsilateral Wolffian ductal mesenchyme were also seen in the animals with IHP. Additional research is needed to further understand the mechanisms and consequences of IHP on prostate growth and development. Alterations to normal prenatal development of the male accessory sex organs can have important consequences for the growth and morphology of the adult gland. Anat Rec, 2010. © 2010 Wiley-Liss, Inc. [source] |