Acetate-salt Hypertensive Rats (acetate-salt + hypertensive_rat)

Distribution by Scientific Domains

Kinds of Acetate-salt Hypertensive Rats

  • deoxycorticosterone acetate-salt hypertensive rat


  • Selected Abstracts


    Central Bromocriptine-Induced Tachycardia is Reversed to Bradycardia in Conscious, Deoxycorticosterone Acetate-Salt Hypertensive Rats

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 5 2001
    Saad Lahlou
    The present study investigated the effect of bromocriptine on heart rate and the principal site of action of this agonist in conscious, deoxycorticosterone acetate-salt hypertensive rats, in which altered central dopaminergic activity has been previously reported. Intravenous administration of bromocriptine (150 ,g/kg) increased heart rate (49±5 beats/min.) in uninephrectomized control rats, while it induced a significant bradycardia (50±6 beats/min.) in deoxycorticosterone acetate-salt hypertensive rats. In the latter animals, intravenous (500 ,g/kg) or intrathecal (40 ,g/rat at T9,T10) pretreatment with domperidone, a selective dopamine D2 receptor antagonist that does not cross the blood-brain barrier, reduced partially, but significantly, the bradycardiac responses to bromocriptine (reduction of about 44% and 48% of the maximal effect, respectively). In contrast, the bromocriptine-induced bradycardia was fully abolished by intravenous pretreatment with metoclopramide (300 ,g/kg), a dopamine D2 receptor antagonist that crosses the blood-brain barrier, or by combined pretreatment with intravenous and intrathecal domperidone. These results indicate that, in deoxycorticosterone acetate-salt hypertensive rats, bromocriptine decreases rather than increases heart rate, an effect that is mediated partly through a peripheral D2 dopaminergic mechanism and partly through stimulation of spinal dopamine D2 receptors. They further support the concept that, in normotensive, conscious rats, the central tachycardia of bromocriptine appears to predominate and to mask the bradycardia of this agonist at both peripheral and spinal dopamine D2 receptors. [source]


    Renal impairment in deoxycorticosterone acetate-salt hypertensive rats

    NEPHROLOGY, Issue 4 2000
    Catherine Dallemagne
    Summary: This study has compared renal function in deoxycorticosterone (DOCA)-salt hypertensive Wistar rats (uninephrectomy followed by administration of DOCA 25 mg subcutaneously every fourth day and 1% NaCl in the drinking water) with various control rats using the isolated perfused kidney preparation. The systolic blood pressure of DOCA-salt hypertensive rats was 180 ± 10 mmHg (uninephrectomy controls: 136 ± 9 mmHg) while normalization of calcium intake (DOCA-Ca rats, 1% CaCl2 in water) attenuated this increase (systolic blood pressure, 146 ± 5 mmHg). Renal mass corrected for body weight increased by 25% after uninephrectomy, 55% in uninephrectomized rats given NaCl, 152% in DOCA-salt rats and 147% in DOCA-Ca rats. At a renal perfusion pressure of 135 mmHg, isolated perfused kidneys from DOCA-salt rats showed decreases of 48% in glomerular filtration rate and 69% in sodium excretion with an increase of 44% in renal vascular resistance compared with uninephrectomized rats. There were no significant differences in renal function between DOCA-salt and DOCA-Ca rats. Histological assessment of renal pathology showed proximal tubular hypertrophy and hyperplasia, marked focal distal tubular atrophy, interstitial fibrosis and glomerular hypercellularity in DOCA rats compared with UNX rats. Lesions were less obvious in UNX-salt or DOCA-Ca rats. The lack of direct correlation between alterations in function and pathology may be explained by the compensatory effect of remaining healthy or hypertrophied nephrons. Thus, the DOCA-salt model of hypertension in rats is associated with marked structural kidney damage and severely decreased kidney function. Marked attenuation of systemic hypertension by normalizing calcium intake in DOCA-salt rats did not prevent impairment of kidney function. [source]


    Central Bromocriptine-Induced Tachycardia is Reversed to Bradycardia in Conscious, Deoxycorticosterone Acetate-Salt Hypertensive Rats

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 5 2001
    Saad Lahlou
    The present study investigated the effect of bromocriptine on heart rate and the principal site of action of this agonist in conscious, deoxycorticosterone acetate-salt hypertensive rats, in which altered central dopaminergic activity has been previously reported. Intravenous administration of bromocriptine (150 ,g/kg) increased heart rate (49±5 beats/min.) in uninephrectomized control rats, while it induced a significant bradycardia (50±6 beats/min.) in deoxycorticosterone acetate-salt hypertensive rats. In the latter animals, intravenous (500 ,g/kg) or intrathecal (40 ,g/rat at T9,T10) pretreatment with domperidone, a selective dopamine D2 receptor antagonist that does not cross the blood-brain barrier, reduced partially, but significantly, the bradycardiac responses to bromocriptine (reduction of about 44% and 48% of the maximal effect, respectively). In contrast, the bromocriptine-induced bradycardia was fully abolished by intravenous pretreatment with metoclopramide (300 ,g/kg), a dopamine D2 receptor antagonist that crosses the blood-brain barrier, or by combined pretreatment with intravenous and intrathecal domperidone. These results indicate that, in deoxycorticosterone acetate-salt hypertensive rats, bromocriptine decreases rather than increases heart rate, an effect that is mediated partly through a peripheral D2 dopaminergic mechanism and partly through stimulation of spinal dopamine D2 receptors. They further support the concept that, in normotensive, conscious rats, the central tachycardia of bromocriptine appears to predominate and to mask the bradycardia of this agonist at both peripheral and spinal dopamine D2 receptors. [source]


    Immunosuppression with mycophenolate mofetil attenuates the development of hypertension and albuminuria in deoxycorticosterone acetate-salt hypertensive rats

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2010
    Erika I Boesen
    Summary 1. The interplay between the immune and renin,angiotensin systems is emerging as a crucial factor in the development and progression of hypertension. The aim of the present study was to determine the involvement of immune cells in the hypertension and renal injury produced by a non-angiotensin II-dependent form of hypertension, namely deoxycorticosterone acetate (DOCA)-salt-induced hypertension, in rats. 2. Male Sprague-Dawley rats underwent uninephrectomy and received either a sustained-release pellet of DOCA s.c. and 0.9% NaCl (saline) to drink for 21 days or a placebo pellet and water to drink for 21 days. Additional groups of DOCA-salt- and placebo-treated rats were treated concurrently with the immune suppressant mycophenolate mofetil (MMF; 30 mg/kg per day). Rats were placed in metabolic cages for 24 h urine collection prior to and at weekly intervals during the 21 day experimental period. 3. Mycophenolate mofetil significantly attenuated the development of hypertension in DOCA-salt rats compared with untreated DOCA-salt hypertensive rats (mean arterial pressure by telemetry on Day 18 146 ± 7 vs 180 ± 3 mmHg, respectively; P < 0.001), as well as proteinuria (87 ± 27 vs 305 ± 63 mg/day, respectively, on Day 21) and albuminuria (51 ± 15 vs 247 ± 73 mg/day, respectively, on Day 21). Creatinine clearance was better preserved in MMF-treated DOCA-salt rats compared with untreated DOCA-salt rats (0.74 ± 0.07 vs 0.49 ± 0.09 mL/min, respectively; P < 0.05), but was still significantly reduced compared with that in the placebo group (1.15 ± 0.12 mL/min; P < 0.05). Finally, MMF treatment significantly attenuated the DOCA-salt-induced rise in renal cortical T-lymphocyte and macrophage infiltration (P < 0.05). 4. These data indicate that immune cells play a deleterious role in both the hypertension and renal injury associated with DOCA-salt hypertension. [source]