ACE Expression (ace + expression)

Distribution by Scientific Domains


Selected Abstracts


Human skin: source of and target organ for angiotensin II

EXPERIMENTAL DERMATOLOGY, Issue 3 2004
U. Muscha Steckelings
Abstract:, The present study examined the expression of angiotensin receptors in human skin, the potential synthesis of angiotensin II (Ang II) in this location and looked for a first insight into physiological functions. AT1 and AT2 receptors were found within the epidermis and in dermal vessel walls. The same expression pattern was found for angiotensinogen, renin and angiotensin-converting enzyme (ACE). All components could additionally be demonstrated at mRNA level in cultured primary keratinocytes, melanocytes, dermal fibroblasts and dermal microvascular endothelial cells, except for AT2 receptors in melanocytes. The ability of cutaneous cells to synthesize Ang II was proved by identifying the molecule in cultured keratinocytes. Furthermore, in artificially wounded keratinocyte monolayers, ACE-mRNA expression was rapidly increased, and enhanced ACE expression was still found in cutaneous human scars 3 months after wounding. These findings suggest that the complete renin,angiotensin system is present in human skin and plays a role in normal cutaneous homeostasis as well as in human cutaneous wound healing. [source]


Angiotensin I-converting enzyme and potential substrates in human testis and testicular tumours

APMIS, Issue 1 2003
Review article
The angiotensin I-converting enzyme (ACE, kininase II, CD143) shows a broad specificity for various oligopeptides. Besides the well-known conversion of angiotensin I to II, ACE degrades efficiently kinins and the tetrapeptide AcSDKP (goralatide) and thus equally participates in the renin-angiotensin system, the kallikrein-kinin system, and the regulation of stem cell proliferation. In the mammalian testis, ACE occurs in two isoforms. The testicular isoform (tACE) is exclusively expressed during spermatogenesis and is generally thought to represent the germ cell-specific isozyme. However, we have previously demonstrated that, in addition to tACE, the somatic isoform (sACE) is also present in human germ cells. Similar to other oncofoetal markers, sACE exhibits a transient expression during foetal germ cell development and appears to be a constant feature of intratubular germ cell neoplasm, the so-called carcinoma-in-situ (CIS) and, in particular, of classic seminoma. This demands the existence of specific paracrine functions during male germ cell differentiation and development of male germ cell tumours, which are mediated by either of the two ACE isoforms. Considering the complexity of current data about ACE, a logical connection is required between () the precise localisation of ACE isoforms, (I) the local access to potential substrates and (II) functional data obtained by knockout mice models. The present article summarises the current knowledge about ACE and its potential substrates with special emphasis on the differentiation-restricted ACE expression during human spermatogenesis and prespermatogenesis, the latter being closely linked to the pathogenesis of human germ cell tumours. [source]


Angiotensin I-converting enzyme is expressed by erythropoietic cells of normal and myeloproliferative bone marrow

BRITISH JOURNAL OF HAEMATOLOGY, Issue 3 2003
Maruska Marusic-Vrsalovic
Summary. It is proposed that a locally active, intrinsic renin,angiotensin system (RAS) exists in the bone marrow (BM) and plays a role in regulating haematopoiesis. Angiotensin II type I receptor has been detected on erythroid burst-forming unit-derived cells; its antagonist losartan and angiotensin I-converting enzyme (ACE) inhibitors can suppress erythropoiesis. The possible role of ACE/RAS in BM was investigated by evaluating ACE expression in normal BM, several myeloproliferative disorders and myelodysplasia. Immunohistochemical studies showed that erythroid elements expressed ACE protein in both normal and disturbed haematopoiesis. The presence of ACE in erythroid cells suggests another mechanism for direct ACE inhibitor activity in erythropoiesis. [source]


Association of angiotensin I-converting enzyme gene polymorphisms with aspirin intolerance in asthmatics

CLINICAL & EXPERIMENTAL ALLERGY, Issue 11 2008
T-H. Kim
Summary Background Aspirin-intolerant asthma (AIA) refers to the development of bronchoconstriction in asthmatic individuals following the ingestion of aspirin or other non-steroidal anti-inflammatory drugs (NSAIDs). Angiotensin I-converting enzyme (ACE), a membrane-bound peptidase present in the lung, plays a pivotal role in the metabolism of the endogenous peptides involved in the pathogenesis of asthma. Methods We screened a Korean asthma cohort (581 asthmatics including 81 aspirin-intolerant asthmatics and 231 aspirin-tolerant asthmatics, and 181 normal controls) for four single nucleotide polymorphisms (SNPs; ,262 A>T and ,115 T>C in the 5,-flanking region and +5467 T>C [Pro450Pro] and+11860 A>G [Thr776Thr] in the coding region) and one ins/del (+21288 CT) in the ACE gene. Results None of the SNPs or haplotypes showed any association with the development of asthma, but they were significantly associated with the risk of AIA. Logistic regression indicated that the frequency of the rare alleles of ,262 A>T and ,115 T>C was higher in subjects with AIA than in subjects with aspirin-tolerant asthma (ATA) (P=0.003,0.01, P corr=0.015,0.05). Subjects homozygous for the rare alleles of ,262 A>T and ,115 T>C showed a greater decline in forced expiratory volume in 1 s (FEV1) after aspirin provocation than those homozygous for the common alleles (P<0.05). A luciferase reporter assay indicated that ACE promoters containing the rare ,262 A>T allele possessed lower activity than did those containing the common allele (P=0.009). In addition, ACE promoters bearing the rare ,115 T>C allele had no luciferase activity. DNA,protein binding assays revealed a band containing the ACE promoter region (including ,262 A) and a protein complex. Conclusion The ,262 A>T polymorphism in the promoter of the ACE gene is associated with AIA, and the rare allele of ,262 A>T may confer aspirin hypersensitivity via the down-regulation of ACE expression. [source]