| |||
Accurate Mass Data (accurate + mass_data)
Selected AbstractsDifferentiation of structural isomers in a target drug database by LC/Q-TOFMS using fragmentation predictionDRUG TESTING AND ANALYSIS, Issue 6 2010Elli Tyrkkö Abstract Isomers cannot be differentiated from each other solely based on accurate mass measurement of the compound. A liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/Q-TOFMS) method was used to systematically fragment a large group of different isomers. Two software programs were used to characterize in silico mass fragmentation of compounds in order to identify characteristic fragments. The software programs employed were ACD/MS Fragmenter (ACD Labs Toronto, Canada), which uses general fragmentation rules to generate fragments based on the structure of a compound, and SmartFormula3D (Bruker Daltonics), which assigns fragments from a mass spectra and calculates the molecular formulae for the ions using accurate mass data. From an in-house toxicology database of 874 drug substances, 48 isomer groups comprising 111 compounds, for which a reference standard was available, were found. The product ion spectra were processed with the two software programs and 1,3 fragments were identified for each compound. In 82% of the cases, the fragment could be identified with both software programs. Only 10 isomer pairs could not be differentiated from each other based on their fragments. These compounds were either diastereomers or position isomers undergoing identical fragmentation. Accurate mass data could be utilized with both software programs for structural elucidation of the fragments. Mean mass accuracy and isotopic pattern match values (SigmaFit; Bruker Daltonics Bremen, Germany) were 0.9 mDa and 24.6 mSigma, respectively. The study introduces a practical approach for preliminary compound identification in a large target database by LC/Q-TOFMS without necessarily possessing reference standards. Copyright © 2010 John Wiley & Sons, Ltd. [source] Searching for anthropogenic contaminants in human breast adipose tissues using gas chromatography-time-of-flight mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2009Félix Hernández Abstract The potential of gas chromatography-time-of-flight mass spectrometry (GC-TOF MS) for screening anthropogenic organic contaminants in human breast adipose tissues has been investigated. Initially a target screening was performed for a list of 125 compounds which included persistent halogen pollutants [organochlorine (OC) pesticides, polychlorinated biphenylss (PCBs), polybrominated diphenyl ethers (PBDEs)], polyaromatic hydrocarbons (PAHs), alkylphenols, and a notable number of pesticides from the different fungicide, herbicide and insecticide families. Searching for target pollutants was done by evaluating the presence of up to five representative ions for every analyte, all measured at accurate mass (20-mDa mass window). The experimental ion abundance ratios were then compared to those of reference standards for confirmation. Sample treatment consisted of an extraction with hexane and subsequent normal-phase (NP) High performance liquid chromatography (HPLC) or SPE cleanup. The fat-free LC fractions were then investigated by GC-TOF MS. Full-spectral acquisition and accurate mass data generated by GC-TOF MS also allowed the investigation of nontarget compounds using appropriate processing software to manage MS data. Identification was initially based on library fit using commercial nominal mass libraries. This was followed by comparing the experimental accurate masses of the most relevant ions with the theoretical exact masses with calculations made using the elemental composition calculator included in the software. The application of both target and nontarget approaches to around 40 real samples allowed the detection and confirmation of several target pollutants including p,p,-DDE, hexachlorobenzene (HCB), and some polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Several nontarget compounds that could be considered anthropogenic pollutants were also detected. These included 3,5-di- tert -butyl-4-hydroxy-toluene (BHT) and its metabolite 3,5-di- tert -butyl-4-hydroxybenzaldehyde (BHT-CHO), dibenzylamine, N -butyl benzenesulfonamide (N -BBSA), some naphthalene-related compounds and several PCBs isomers not included in the target list. As some of the compounds detected are xenoestrogens, the methodology developed in this paper could be useful in human breast cancer research. Copyright © 2008 John Wiley & Sons, Ltd. [source] Mass spectrometric analysis of the marine lipophilic biotoxins pectenotoxin-2 and okadaic acid by four different types of mass spectrometersJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 8 2008Arjen Gerssen Abstract The performances of four different mass spectrometers [triple-quadrupole (TQ), time-of-flight (ToF), quadrupole ToF (Q-ToF) and ion trap (IT)] for the detection of the marine lipophilic toxins pectenotoxin-2 (PTX2) and okadaic acid (OA) were investigated. The spectral data obtained with the different mass spectrometric analyzers were used to propose fragmentation schemes for PTX2 in the positive electrospray mode and for OA in the negative electrospray mode. TQ data were used to obtain product ions, while ToF and Q-ToF-MS produced accurate mass data of the precursor ion and product ions, respectively. IT data provided a better understanding of the fragmentation pathways using MSn experiments. With respect to analytical performance, all four mass analyzers showed a good linearity (R2 > 0.97) and repeatability (CV < 20%). Detection limits (LoDs) (S/N = 3) were the lowest on triple-quad MS: 12.2 and 2.9 pg on-column for PTX2 and OA, respectively. Copyright © 2008 John Wiley & Sons, Ltd. [source] Collision-induced dissociation of sulfur-containing imidazolium ionic liquidsJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2008Alain Lesimple Abstract A number of 1,2-dimethylimidazole ionic liquids substituted on NII with alkyl chains of varying lengths terminated with sulfur-containing groups were investigated by electrospray high-resolution tandem Fourier-transform mass spectrometry. Fragmentation pathways are strongly dependent on the oxidation state of the sulfur and the alkyl chain length. The dissociations detected are rationalized by deuterium labeling, comparisons between homologous compounds and accurate mass data. Several homolytic processes are reported, leading to distonic ions and loss of hydrogen, methyl and other free radicals. Copyright © 2007 John Wiley & Sons, Ltd. [source] Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matchingRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2010André LeBlanc Drug bioactivation leading to the formation of reactive species capable of covalent binding to proteins represents an important cause of drug-induced toxicity. Reactive metabolite detection using invitro microsomal incubations is a crucial step in assessing potential toxicity of pharmaceutical compounds. The most common method for screening the formation of these unstable, electrophilic species is by trapping them with glutathione (GSH) followed by liquid chromatography/mass spectrometry (LC/MS) analysis. The present work describes the use of a brominated analog of glutathione, N -(2-bromocarbobenzyloxy)-GSH (GSH-Br), for the invitro screening of reactive metabolites by LC/MS. This novel trapping agent was tested with four drug compounds known to form reactive metabolites, acetaminophen, fipexide, trimethoprim and clozapine. Invitro rat microsomal incubations were performed with GSH and GSH-Br for each drug with subsequent analysis by liquid chromatography/high-resolution mass spectrometry on an electrospray time-of-flight (ESI-TOF) instrument. A generic LC/MS method was used for data acquisition, followed by drug-specific processing of accurate mass data based on mass defect filtering and isotope pattern matching. GSH and GSH-Br incubations were compared to control samples using differential analysis (Mass Profiler) software to identify adducts formed via the formation of reactive metabolites. In all four cases, GSH-Br yielded improved results, with a decreased false positive rate, increased sensitivity and new adducts being identified in contrast to GSH alone. The combination of using this novel trapping agent with powerful processing routines for filtering accurate mass data and differential analysis represents a very reliable method for the identification of reactive metabolites formed in microsomal incubations. Copyright © 2010 John Wiley & Sons, Ltd. [source] Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro , amitriptyline and verapamil as model compoundsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 7 2010Timo Rousu Liquid chromatography in combination with mass spectrometry (LC/MS) is a superior analytical technique for metabolite profiling and identification studies performed in drug discovery and development laboratories. In the early phase of drug discovery the analytical approach should be both time- and cost-effective, thus providing as much data as possible with only one visit to the laboratory, without the need for further experiments. Recent developments in mass spectrometers have created a situation where many different mass spectrometers are available for the task, each with their specific strengths and drawbacks. We compared the metabolite screening properties of four main types of mass spectrometers used in analytical laboratories, considering both the ability to detect the metabolites and provide structural information, as well as the issues related to time consumption in laboratory and thereafter in data processing. Human liver microsomal incubations with amitriptyline and verapamil were used as test samples, and early-phase ,one lab visit only' approaches were used with all instruments. In total, 28 amitriptyline and 69 verapamil metabolites were found and tentatively identified. Time-of-flight mass spectrometry (TOFMS) was the only approach detecting all of them, shown to be the most suitable instrument for elucidating as comprehensive metabolite profile as possible leading also to lowest overall time consumption together with the LTQ-Orbitrap approach. The latter however suffered from lower detection sensitivity and false negatives, and due to slow data acquisition rate required slower chromatography. Approaches with triple quadrupole mass spectrometry (QqQ) and hybrid linear ion trap triple quadrupole mass spectrometry (Q-Trap) provided the highest amount of fragment ion data for structural elucidation, but, in addition to being unable to produce very high-important accurate mass data, they suffered from many false negatives, and especially with the QqQ, from very high overall time consumption. Copyright © 2010 John Wiley & Sons, Ltd. [source] Metabolite identification of small interfering RNA duplex by high-resolution accurate mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2008Yan Zou On-line liquid chromatography/electrospray ionization high-resolution mass spectrometry (LC/ESI-HRMS) using an LTQ-Orbitrap mass spectrometer was employed to investigate the metabolite profiles of a model siRNA duplex designated HBV263. The HBV263 duplex was incubated in rat and human serum and liver microsomes in vitro. The siRNA drug and its metabolites were then extracted using a liquid-liquid extraction followed by solid-phase extraction (LLE-SPE), and analyzed by LC/ESI-MS. High-resolution accurate mass data enabled differentiation between two possible metabolite sequences with a monoisotopic molecular mass difference of less than 1,Da. ProMass deconvolution software was used to provide semi-automated data processing. In vitro serum and liver microsome incubation samples afforded different metabolite patterns: the antisense strand of the duplex was degraded preferentially in rat and human serum, while the sense strand of the duplex was less stable in rat and human liver microsomes. Copyright © 2008 John Wiley & Sons, Ltd. [source] Studies on azaspiracid biotoxins.RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 24 2002In this report, the mass spectral analysis of azaspiracid biotoxins is described. Specifically, the collision-induced dissociation (CID) behavior and differences between CID spectra obtained on a triple-quadrupole, a quadrupole time-of-flight, and an ion-trap mass spectrometer are addressed here. The CID spectra obtained on the triple-quadrupole mass spectrometer allowed the classification of the major product ions of the five investigated compounds (AZA 1,5) into five distinct fragment ion groups, according to the backbone cleavage positions. Although the identification of unknown azaspiracids was difficult based on CID alone, the spectra provided sufficient structural information to allow confirmation of known azaspiracids in marine samples. Furthermore, we were able to detect two new azaspiracid analogs (AZA 1b and 6) in our samples and provide a preliminary structural analysis. The proposed dissociation pathways under tandem mass spectrometry (MS/MS) conditions were confirmed by a comparison with accurate mass data from electrospray quadrupole time-of-flight MS/MS experiments. Regular sequential MSn analysis on an ion-trap mass spectrometer was more restricted in comparison to the triple-quadrupole mass spectrometer, because the azaspiracids underwent multiple [M,+,H,,,nH2O]+ (n,=,1,6) losses from the precursor ion under CID. Thus, the structural information obtained from MSn experiments was somewhat limited. To overcome this limitation, we developed a wide-range excitation technique using a 180-u window that provided results comparable to the triple-quadrupole instrument. To demonstrate the potential of the method, we applied it to the analysis of degraded azaspiracids from mussel tissue extracts. Copyright © 2002 John Wiley & Sons, Ltd. [source] On-Line HPLC-UV-mass spectrometry and tandem mass spectrometry for the rapid delineation and characterization of differences in complex mixtures: a case study using toxic oil variantsBIOMEDICAL CHROMATOGRAPHY, Issue 5 2002Frank W. Crow An integrated differential approach to the characterization of complex mixtures is presented which includes the targeting of liquid chromatography (LC) peaks for identification using characteristic UV adsorption of the LC peak, subsequent molecular weight and formula determination using accurate mass LC mass spectrometry (MS), and structure characterization using accurate mass LC-tandem mass spectrometry. The use of differential UV adsorption aids in narrowing the scope of the study to only specific peaks of interest. Accurate mass measurement of the molecular ion species provides molecular weight information as well as atomic composition information. The tandem MS (MS/MS) spectra provide fragmentation information which allows for structural characterization of each component. Accurate mass assignment of each of the fragment ions in the MS/MS spectrum provides atomic composition for each of the fragment ions and thus further aids in the structural characterization. These experiments are facilitated through the use of on-line LC-MS and LC-MS/MS with in-line UV detection. A synthetic toxic oil (STO) related to Toxic Oil Syndrome is studied with a focus on possible contaminants resulting from the interaction of aniline, used as a denaturant, with the normal components of the oil. A differential analysis between the STO and a control oil is performed. LC peaks were targeted using UV absorbance to indicate the possible presence of the aniline moiety. Further differential analysis was performed through the determination of the MS signals associated with each component separated on the LC. Finally, the MS/MS data was also used to determine if the fragmentation of the targeted components indicated the presence of aniline. The MS/MS and accurate mass data were used to assign the structures for the targeted components. Copyright © 2002 John Wiley & Sons, Ltd. [source] Fragmentation Mechanism of Trans -,-Aryl-,-enamino EstersCHINESE JOURNAL OF CHEMISTRY, Issue 8 2002Nan Jiang Abstract Electron impact-induced fragmentation mechanisms of trans-, -aryl- , -enamino esters were investigated using mass-analyzed ion kinetic energy (MIKE) spectrometry and high resolution accurate mass data. It was found that the main characteristic fragmentations of compounds studied were: an odd electron ion M+ - EtOH was formed by losing a neutral molecule of ethanol; and the skeletal rearrangements took place; and the ring opening reaction happened after losing a carbon monoxide; and the typical McLafferty rearrangement underwent in ester group. The cyclization reaction caused by losing neutral molecule of TsNH2 due to the ortho -effects of substituted group of aromatic ring was also observed. [source] |