Accretion Process (accretion + process)

Distribution by Scientific Domains


Selected Abstracts


Numerical simulation of rime ice accretion process on an airfoil

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2005
Zhang Da-lin
Abstract To simulate the ice accretion on an airfoil, a boundary moving technique is proposed to deal with the distortion of the airfoil surface due to ice accretion on the leading edge. Incorporating the two-phase model of air-supercooled droplets in the Eulerian coordinate system, this technique is applied to simulate the process of the rime ice accretion (the droplets freeze at the instant impinging on the airfoil) on the NACA 0012 airfoil, and the ice profile after ice accretion is achieved successfully. A brief comparison between the results of this paper and the experiment data indicates that the current method is applicable and effective. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(4): 226,234, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20064 [source]


Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example

METEORITICS & PLANETARY SCIENCE, Issue 5 2003
Amitabha Ghosh
Previous simulations of asteroid heat transfer have assumed that accretion was instantaneous. For the first time, we present a thermal model that assumes a realistic (incremental) accretion scenario and takes into account the heat budget produced by decay of 26Al during the accretion process. By modeling 6 Hebe (assumed to be the H chondrite parent body), we show that, in contrast to results from instantaneous accretion models, an asteroid may reach its peak temperature during accretion, the time at which different depth zones within the asteroid attain peak metamorphic temperatures may increase from the center to the surface, and the volume of high-grade material in the interior may be significantly less than that of unmetamorphosed material surrounding the metamorphic core. We show that different times of initiation and duration of accretion produce a spectrum of evolutionary possibilities, and thereby, highlight the importance of the accretion process in shaping an asteroid's thermal history. Incremental accretion models provide a means of linking theoretical models of accretion to measurable quantities (peak temperatures, cooling rates, radioisotope closure times) in meteorites that were determined by their thermal histories. [source]


The star formation efficiency and its relation to variations in the initial mass function

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
Paul C. Clark
ABSTRACT We investigate how the dynamical state of a turbulently supported, 1000 M,, molecular cloud affects the properties of the cluster it forms, focusing our discussion on the star formation efficiency (SFE) and the initial mass function (IMF). A variety of initial energy states are examined in this paper, ranging from clouds with |Egrav| = 0.1 Ekin to clouds with |Egrav| = 10 Ekin, and for both isothermal and piece-wise polytropic equations of state (similar to that suggested by Larson). It is found that arbitrary SFEs are possible, with strongly unbound clouds yielding very low SFEs. We suggest that the low SFE in the Maddelena cloud may be a consequence of the relatively unbound state of its internal structure. It is also found that competitive accretion results in the observed IMF when the clouds have initial energy states of |Egrav| ,Ekin. We show that under such conditions the shape of the IMF is independent of time in the calculations. This demonstrates that the global accretion process can be terminated at any stage in the cluster's evolution, while still yielding a distribution of stellar masses that is consistent with the observed IMF. As the clouds become progressively more unbound, competitive accretion is less important and the protostellar mass function flattens. These results predict that molecular clouds should be permeated with a distributed population of stars that follow a flatter than Salpeter IMF. [source]


Kinematic structure in the Galactic halo at the North Galactic Pole: RR Lyrae and blue horizontal branch stars show different kinematics

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
T. D. Kinman
ABSTRACT Radial velocities and proper motions (derived from the GSC-II data base) are given for 38 RR Lyrae (RRL) stars and 79 blue horizontal branch (BHB) stars in a ,200 deg2 area around the North Galactic Pole (NGP). Both heliocentric (UVW) and galactocentric (VR, V,, Vz) space motions are derived for these stars using a homogeneous distance scale consistent with (m,M)0= 18.52 for the Large Magellanic Cloud (LMC). An analysis of the 26 RRL and 52 BHB stars whose height (Z) above the plane is less than 8 kpc shows that this halo sample is not homogeneous. Our BHB sample (like that of Sirko et al.) has a zero galactic rotation (V,) and roughly isotropic velocity dispersions. The RRL sample shows a definite retrograde rotation (V,=,95 ± 29 km s,1) and non-isotropic velocity dispersions. The combined BHB and RRL sample has a retrograde galactic rotation (V) that is similar to that found by Majewski for his sample of subdwarfs in Selected Area (SA) 57. The velocity dispersion of the RRL stars that have a positive W motion is significantly smaller than the dispersion of those ,streaming down' with a negative W. Also, the ratio of RRL to BHB stars is smaller for the sample that has positive W. Our halo sample occupies 10.4 kpc3 at a mean height of 5 kpc above the Galactic plane. In this volume, one component (rich in RRL stars) shows retrograde rotation and the streaming motion that we associate with the accretion process. The other component (traced by the BHB stars) shows essentially no rotation and less evidence of streaming. These two components have horizontal branch (HB) morphologies that suggest that they may be the field star equivalents of the young and old halo globular clusters, respectively. Clearly, it is quite desirable to use more than one tracer in any kinematic analysis of the halo. [source]


On the evolution of the nova-like variable AE Aquarii

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2002
P. J. Meintjes
Abstract A possible evolution for the enigmatic cataclysmic variable AE Aquarii is considered that may put into context the long orbital period and short white dwarf rotation period compared with other DQ Her systems. It has been shown that mass transfer could have been initiated when the secondary KIV,V star was already somewhat evolved when it established Roche lobe contact. In this initial phase the orbital period of the system was probably Porb,i, 8.5 h, and the white dwarf rotation period P*,i > 1 h. Mass transfer in the form of diamagnetic gas blobs will result in an initial discless accretion process, resulting in an efficient drain of the binary orbital angular momentum. Since the initial mass ratio of the binary was probably qi, 0.8, a high mass transfer rate and a slow expansion of the Roche lobe of the secondary star followed, accompanied by a fast expanding secondary following the mass loss. This could have resulted in the KIV,V secondary flooding its Roche surface, causing a run-away mass transfer of that lasted for approximately , during which time the binary expanded to an orbital period of approximately Porb, 11 h. During this phase the mass accretion rate on to the surface of the white dwarf most probably exceeded the critical value for stable nuclear burning , which could have resulted in AE Aqr turning into an ultrasoft X-ray source. The high mass transfer terminated when a critical mass ratio of qcrit= 0.73 was reached. Disc torques spun-up the white dwarf to a period close to 33 s within the time-scale before the high mass transfer shut down when qcrit was reached. The decrease in the mass loss of the secondary allowed it to re-establish hydrostatic equilibrium on the dynamical time-scale (fraction of a day). From this point when qcrit is reached the mass transfer and binary evolution proceed at a slower rate since mass transfer from the secondary star is driven by magnetic braking of the secondary on a time-scale , which is the same as the thermal time-scale tth, 6.3 × 107 yr, i.e. the time-scale on which the secondary shrinks to restore its perturbed thermal equilibrium after the high mass loss. The significantly lower mass transfer in this phase will result in mass ejection from the system. This propeller,ejector action erodes the rotational kinetic energy of the white dwarf, channelling it into mass ejection and non-thermal activity, which explains the non-thermal outbursts that are observed at radio wavelengths and occasionally also at TeV energies. [source]


Condensation and aggregation of solar corundum and corundum-hibonite grains

METEORITICS & PLANETARY SCIENCE, Issue 7-8 2007
T. M. Nakamura
Some of the corundum and corundum-hibonite grains occur as aggregates of 2 to 6 grains having similar sizes. The oxygen isotopic compositions of some of the corundum-bearing grains suggest their solar nebula origin. 26Al- 26Mg systematics of one corundum grain showed the canonical initial 26Al/27Al ratio, also suggesting a solar nebula origin. Quantitative evaluation of condensation and accretion processes made based on the homogeneous nucleation of corundum, diffusion-controlled hibonite formation, collisions of grains in the nebula, and critical velocity for sticking, indicates that, in contrast to the hibonite-bearing aggregates of corundum grains, the hibonite-free corundum aggregates could not have formed in the slowly cooling nebular region with solar composition. We suggest instead that such aggregates formed near the protosun, either in a region that stayed above the condensation temperature of hibonite for a long time or in a chemically fractionated, Ca-depleted region, and were subsequently physically removed from this hot region, e.g., by disk wind. [source]


Long-lived disc accretion in the , Chamaeleontis pre-main sequence star cluster

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
Warrick A. Lawson
ABSTRACT High-resolution spectroscopic study of late-type members of the ,9-Myr-old , Chamaeleontis star cluster shows that four stars, RECX 5, 9, 11 and ECHA J0843.3,7905, have broad H, profiles indicative of ballistic accretion of material from circumstellar discs first identified by virtue of their infrared (IR) excess emission. Quantitative analysis of the profiles finds accretion in , Cha stars at rates comparable to that derived by Muzerolle et al. for members of the similarly aged TW Hydrae Association (TWA); rates 1,3 orders of magnitude lower than in younger classical T Tauri (CTT) stars. Together these studies indicate that the fraction of long-lived inner discs can be significantly higher than that inferred from study of younger pre-main sequence (PMS) populations, which suggest a disc lifetime of <6 Myr. The detection of long-lived discs may have implications for the formation of planetary systems. If slow accretion processes are the dominant formation mechanism for Jovian planets then long-lived discs may be ideal sites to search for evidence for protoplanets. [source]