AC System (ac + system)

Distribution by Scientific Domains


Selected Abstracts


New control for HVDC system connected to large windfarm

ELECTRICAL ENGINEERING IN JAPAN, Issue 4 2009
Kenichi Tanomura
Abstract HVDC consisting of self-commutated inverters is able to be applied for power transmission connecting from a remote large windfarm to a weak AC system. Most self-commutated HVDC is applied for connection between two AC systems that have synchronous power sources, but it is not suitable for a windfarm that consists of induction generators without synchronous power source. This paper presents new control for the self-commutated HVDC system connected to a large windfarm of induction generators. The effect of the proposed control is shown by EMTP simulation. ©2008 Wiley Periodicals, Inc. Electr Eng Jpn, 166(4): 31,39, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20539 [source]


Load-flow conditions for hvdc transmission in synchronous networks

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 2 2000
J. Warnking
The basic purpose for HVDC (high-voltage direct current) transmission is to transmit a determined value of electrical power from one electrical node to another. If there is an AC system in parallel to an HVDC transmission, the load flow via this parallel AC system can be controlled directly. Since HVDC systems offer possibilities to perform fast load-flow control, they can also be used for improving stability. In this paper load-flow calculations of a simplified network are presented. First a comparison between HVDC transmission operating in asynchronous resp. synchronous networks is shown. Synchronous network means that the HVDC transmission works in parallel to an AC system at the same voltage level. It is shown how voltage at the point of installation and how the load angle are influenced due to the synchronous operation. A special regard is drawn to the losses of the transmission. Conditions for minimum total losses are presented. Informer calculations loads are involved. It is shown how they influence the minimum total losses. [source]


Thermoeconomic optimization for a finned-tube evaporator configuration of a roof-top bus air-conditioning system

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2008
M. Khamis Mansour
Abstract This paper presents a methodology of a design optimization technique that can be useful in assessing the best configuration of a finned-tube evaporator, using a thermoeconomic approach. The assessment has been carried out on a direct expansion finned-tube evaporator of a vapor compression cycle for a roof-top bus air-conditioning (AC) system at a specified cooling capacity. The methodology has been conducted by studying the effect of some operational and geometrical design parameters for the evaporator on the entire cycle exergy destruction or irreversibility, AC system coefficient of performance (COP), and total annual cost. The heat exchangers for the bus AC system are featured by a very compact frontal area due to the stringent space limitations and structure standard for the system installation. Therefore, the current study also takes in its account the effect of the variation of the design parameters on the evaporator frontal area. The irreversibility due to heat transfer across the stream-to-stream temperature difference and due to frictional pressure drops is calculated as a function of the design parameters. A cost function is introduced, defined as the sum of two contributions, the investment expense of the evaporator material and the system compressor, and the operational expense of AC system that is usually driven by an auxiliary engine or coupled with the main bus engine. The optimal trade-off between investment and operating cost is, therefore, investigated. A numerical example is discussed, in which a comparison between the commercial evaporator design and optimal design configuration has been presented in terms of the system COP and evaporator material cost. The results show that a significant improvement can be obtained for the optimal evaporator design compared with that of the commercial finned-tube evaporator that is designed based on the conventional values of the design parameters. Copyright © 2007 John Wiley & Sons, Ltd. [source]


New control for HVDC system connected to large windfarm

ELECTRICAL ENGINEERING IN JAPAN, Issue 4 2009
Kenichi Tanomura
Abstract HVDC consisting of self-commutated inverters is able to be applied for power transmission connecting from a remote large windfarm to a weak AC system. Most self-commutated HVDC is applied for connection between two AC systems that have synchronous power sources, but it is not suitable for a windfarm that consists of induction generators without synchronous power source. This paper presents new control for the self-commutated HVDC system connected to a large windfarm of induction generators. The effect of the proposed control is shown by EMTP simulation. ©2008 Wiley Periodicals, Inc. Electr Eng Jpn, 166(4): 31,39, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20539 [source]


Role of protein kinase C-dependent A-kinase anchoring proteins in lysophosphatidic acid-induced cAMP signaling in human diploid fibroblasts

AGING CELL, Issue 6 2006
Ji-Heon Rhim
Summary Previously, we reported that lysophosphatidic acid (LPA)-induced adenosine 3,,5,-cyclic monophosphate (cAMP) production by human diploid fibroblasts depends on the age of the fibroblasts. In this study, we examined the role of A-kinase anchoring proteins (AKAP) in the regulation of LPA-stimulated cAMP production in senescent fibroblasts. We found that levels of protein kinase C (PKC)-dependent AKAPs, such as Gravin and AKAP79, were elevated in senescent cells. Co-immunoprecipitation experiments revealed that Gravin and AKAP79 do not associate with adenylyl cyclase type 2 (AC2) but bind to AC4/6, which interacts with calcium-dependent PKCs ,/, both in young and senescent fibroblasts. When the expression of Gravin and AKAP79 was blocked by small interference RNA transfection, the basal level of cAMP was greatly reduced and the cAMP status after LPA treatment was also reversed. Protein kinase A showed a similar pattern in terms of its basal activity and LPA-dependent modulation. These data suggest that Gravin and to a lesser extent, AKAP79, may play important roles in maintaining the basal AC activity and in coupling the AC systems to inhibitory signals such as Gi, in young cells, and to stimulatory signals such as PKCs in senescent cells. This study also demonstrates that Gravin is especially important for the long-term activation of PKC by LPA in senescent cells. We conclude that LPA-dependent increased level of cAMP in senescent human diploid fibroblasts is associated with increases in Gravin levels resulting in its increased binding with and activation of calcium-dependent PKC ,/, and AC4/6. [source]