| |||
Chromosome Segregation (chromosome + segregation)
Selected AbstractsFrom meiosis to postmeiotic events: Homologous recombination is obligatory but flexibleFEBS JOURNAL, Issue 3 2010Lóránt Székvölgyi Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role. [source] Cdc20 protein contains a destruction-box but, unlike Clb2, its proteolysisis not acutely dependent on the activity of anaphase-promoting complexFEBS JOURNAL, Issue 2 2000Phuay-Yee Goh Both chromosome segregation and the final exit from mitosis require a ubiquitin-protein ligase called anaphase-promoting complex (APC) or cyclosome. This multiprotein complex ubiquitinates various substrates, such as the anaphase inhibitor Pds1 and mitotic cyclins, and thus targets them for proteolysis by the 26S proteasome. The ubiquitination by APC is dependent on the presence of a destruction-box sequence in the N-terminus of target proteins. Recent reports have strongly suggested that Cdc20, a WD40 repeat-containing protein required for nuclear division in the budding yeast Saccharomyces cerevisiae, is essential for the APC-mediated proteolysis. To understand the function of CDC20, we have studied its regulation in some detail. The expression of the CDC20 gene is cell-cycle regulated such that it is transcribed only during late S phase and mitosis. Although the protein is unstable to some extent through out the cell cycle, its degradation is particularly enhanced in G1. Cdc20 contains a destruction box sequence which, when mutated or deleted, stabilizes it considerably in G1. Surprisingly, we find that while the inactivation of APC subunits Cdc16, Cdc23 or Cdc27 results in stabilization of the mitotic cyclin Clb2 in G1, the proteolytic destruction of Cdc20 remains largely unaffected. This suggests the existence of proteolytic mechanisms in G1 that can degrade destruction-box containing proteins, such as Cdc20, in an APC-independent manner. [source] Sister chromatid cohesion: the cohesin cleavage model does not ring trueGENES TO CELLS, Issue 6 2007Vincent Guacci Sister chromatid cohesion is important for high fidelity chromosome segregation during anaphase. Gene products that provide structural components (cohesin complex or cohesin) and regulatory components responsible for cohesion are conserved through eukaryotes. A simple model where cohesion establishment occurs by replication through static cohesin rings and cohesion dissolution occurs by Esp1p/separase mediated cleavage of the cohesin rings (Mcd1p/Rad21p/Scc1p sub-unit cleavage) has become widespread. A growing body of evidence is inconsistent with this ring cleavage model. This review will summarize the evidence showing that cohesin complex is not static but is regulated at multiple cell cycle stages before anaphase in a separase independent manner. Separase is indeed required at anaphase for complete chromosome segregation. However, multiple mechanisms for cohesion dissolution appear to act concurrently during anaphase. Separase is only one such mechanism and its importance varies from organism to organism. The idea that cohesin is a dynamic complex subjected to regulation at various cell cycle stages by multiple mechanisms makes sense in light of the myriad functions in which it has been implicated, such as DNA damage repair, gene silencing and chromosome condensation. [source] Modulation of Alp4 function in Schizosaccharomyces pombe induces novel phenotypes that imply distinct functions for nuclear and cytoplasmic ,-tubulin complexesGENES TO CELLS, Issue 4 2006Hirohisa Masuda The ,-tubulin complex acts as a nucleation unit for microtubule assembly. It remains unknown, however, how spatial and temporal regulation of the complex activity affects microtubule-mediated cellular processes. Alp4 is one of the essential components of the S. pombe,-tubulin complex. We show here that overproduction of a carboxy-terminal form of Alp4 (Alp4C) and its derivatives tagged to a nuclear localization signal or to a nuclear export signal affect localization of ,-tubulin complexes and induces novel phenotypes that reflect distinct functions of nuclear and cytoplasmic ,-tubulin complexes. Nuclear Alp4C induces a Wee1-dependent G2 delay, reduces the levels of the ,-tubulin complex at the spindle pole body, and results in defects in mitotic progression including spindle assembly, cytoplasmic microtubule disassembly, and chromosome segregation. In contrast, cytoplasmic Alp4C induces oscillatory nuclear movement and affects levels of cell polarity markers, Bud6 and Tip1, at the cell ends. These results demonstrate that regulation of nuclear ,-tubulin complex activity is essential for cell cycle progression through the G2/M boundary and M phase, whereas regulation of cytoplasmic ,-tubulin complex activity is important for nuclear positioning and cell polarity control during interphase. [source] Meiosis induced by inactivation of Pat1 kinase proceeds with aberrant nuclear positioning of centromeres in the fission yeast Schizosaccharomyces pombeGENES TO CELLS, Issue 8 2004Yuji Chikashige Nuclear organization of chromosomes proceeds with significant changes during meiosis. In the fission yeast Schizosaccharomyces pombe, centromeres are clustered at the spindle-pole body (SPB) during the mitotic cell cycle; however, during meiotic prophase telomeres become clustered to the SPB and centromeres dissociate from the SPB. We followed the movement of telomeres, centromeres and sister chromatids in living S. pombe cells that were induced to meiosis by inactivation of Pat1 kinase (a key negative regulator of meiosis). Time-course observation in living cells determined the temporal order of DNA synthesis, telomere clustering, centromere separation and meiotic chromosome segregation. When meiosis was induced by Pat1 inactivation at the G1 phase of mitosis, telomeres clustered to the SPB as per normal meiosis, but in most cells the centromeres remained partially associated with the SPB. When meiosis was initiated at the G2 phase by Pat1 inactivation, both telomeres and centromeres retained their mitotic nuclear positions in the majority of cells. These results indicate that the progression of meiosis induced by Pat1 inactivation is aberrant from normal meiosis in some events. As Pat1 inactivation is often useful to induce S. pombe cells synchronously into meiosis, the temporal order of chromosomal events determined here will provide landmarks for the progression of meiosis downstream the Pat1 inactivation. [source] Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome,HUMAN MUTATION, Issue 1 2008Valeska Frank Abstract Meckel-Gruber syndrome (MKS) is an autosomal recessive, lethal multisystemic disorder characterized by meningooccipital encephalocele, cystic kidney dysplasia, hepatobiliary ductal plate malformation, and postaxial polydactyly. Recently, genes for MKS1 and MKS3 were identified, putting MKS on the list of ciliary disorders (ciliopathies). By positional cloning in a distantly related multiplex family, we mapped a novel locus for MKS to a 3-Mb interval on 12q21. Sequencing of the CEP290 gene located in the minimal critical region showed a homozygous 1-bp deletion supposed to lead to loss of function of the encoded centrosomal protein CEP290/nephrocystin-6. CEP290 is thought to be involved in chromosome segregation and localizes to cilia, centrosomes, and the nucleus. Subsequent analysis of another consanguineous multiplex family revealed homozygous haplotypes and the same frameshift mutation. Our findings add to the increasing body of evidence that ciliopathies can cause a broad spectrum of disease phenotypes, and pleiotropic effects of CEP290 mutations range from single organ involvement with isolated Leber congenital amaurosis to Joubert syndrome and lethal early embryonic multisystemic malformations in Meckel-Gruber syndrome. We compiled clinical and genetic data of all patients with CEP290 mutations described so far. No clear-cut genotype,phenotype correlations were apparent as almost all mutations are nonsense, frameshift, or splice-site changes and scattered throughout the gene irrespective of the patients' phenotypes. Conclusively, other factors than the type and location of CEP290 mutations may underlie phenotypic variability. Hum Mutat 29(1), 45,52, 2008. © 2007 Wiley-Liss, Inc. [source] Aurora B expression in post-puberal testicular germ cell tumours,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2009Francesco Esposito Aurora/Ipl1-related kinases are a conserved family of proteins that are essential for the regulation of chromosome segregation and cytokinesis during mitosis. Aberrant expression and activity of these kinases occur in a wide range of human tumours and have been implicated in mechanisms leading to mitotic spindle aberrations, aneuploidy, and genomic instability. Previous studies of our group have shown that Aurora B expression is restricted to specific germinal cells. In this study, we have evaluated by immunohistochemical analysis Aurora B expression in post-puberal testicular germ cell tumours (22 seminomas, 2 teratomas, 15 embryonal carcinomas, 5 mixed germinal tumours with a prominent yolk sac tumour component and 1 choriocarcinoma). The Aurora B protein expression was detected in all intratubular germ cell tumours, seminomas and embryonal carcinomas analysed but not in teratomas and yolk sac carcinomas. The immunohistochemical data were further confirmed by Western blot analysis. In addition, the kinase Aurora B was vigorously expressed in GC-1 cells line derived from murine spermatogonia. The block of Aurora B function induced by a pharmacological inhibitor significantly reduced the growth of GC-1 cells suggesting that Aurora B is a potential therapeutic target. J. Cell. Physiol. 221: 435,439, 2009. © 2009 Wiley-Liss, Inc. [source] Ectodomain shedding of membrane-anchored heparin-binding EGF like growth factor and subcellular localization of the C-terminal fragment in the cell cycleJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005Fujio Toki Heparin-binding EGF-like growth factor (HB-EGF) is initially synthesized as a type I transmembrane protein (proHB-EGF). The proHB-EGF is shed by specific metalloproteases, releasing the N-terminal fragment into the extracellular space as a soluble growth factor (HB-EGF) and the C-terminal fragment (HB-EGF-C) into the intracellular space, where it prevents transcriptional repression by the promyelocytic leukemia zinc finger protein (PLZF). The goal of the present study was to characterize regulation of proHB-EGF shedding and study its temporal variations in HB-EGF-C localization throughout the cell cycle. Quantitative combination analyses of cell surface proHB-EGF and HB-EGF in conditioned medium showed that proHB-EGF shedding occurred during the G1 cell cycle phase. Laser scanning cytometry (LSC) revealed that HB-EGF-C was internalized into the cytoplasm during the late G1 phase and accumulated in the nucleus beginning in the S phase. Subsequent nuclear export of PLZF occurred during the late S phase. Further, HB-EGF-C was localized around the centrosome following breakdown of the nuclear envelope and was localized to the interzonal space with chromosome segregation in the late M phase. Temporal variations in HB-EGF localization throughout the cell cycle were also characterized by time-lapse imaging of cells expressing YFP-tagged proHB-EGF, and these results were consistent with those obtained in cytometry studies. These results indicate that proHB-EGF shedding and subsequent HB-EGF-C signaling are related with progression of the cell cycle and may provide a clue to understand the unique biological significance of non-receptor-mediated signaling of proHB-EGF in cell growth. © 2004 Wiley-Liss, Inc. [source] The replication fork trap and termination of chromosome replicationMOLECULAR MICROBIOLOGY, Issue 6 2008Iain G. Duggin Summary Bacteria that have a circular chromosome with a bidirectional DNA replication origin are thought to utilize a ,replication fork trap' to control termination of replication. The fork trap is an arrangement of replication pause sites that ensures that the two replication forks fuse within the terminus region of the chromosome, approximately opposite the origin on the circular map. However, the biological significance of the replication fork trap has been mysterious, as its inactivation has no obvious consequence. Here we review the research that led to the replication fork trap theory, and we aim to integrate several recent findings that contribute towards an understanding of the physiological roles of the replication fork trap. Likely roles include the prevention of over-replication, and the optimization of post-replicative mechanisms of chromosome segregation, such as that involving FtsK in Escherichia coli. [source] Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinaseMOLECULAR MICROBIOLOGY, Issue 6 2006James Yates Summary Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsKC, which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsKC interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the ,bottom' strand. The resulting recombinase,DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsKC -mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD,FtsKC interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected. [source] An analysis of the factory model for chromosome replication and segregation in bacteriaMOLECULAR MICROBIOLOGY, Issue 4 2001James Sawitzke Recent advances in microscopy have given us important clues as to the nature of chromosome segregation in bacteria. Most current observations favour the view that the process is co-replicational: DNA replication forks are anchored at the cell centre, and the newly replicated DNA is moved towards the cell poles. This scheme can account for orderly segregation even at high growth rates where multiple replication cycles overlap. We argue that there are five distinct activities directly involved in co-replicational segregation dynamics. These we refer to as Push, Direct, Condense, Hold and Clear. We attempt to assign one of these roles to each protein implicated in chromosome segregation. The proposed process is very different from mitosis in eukaryotic cells and perhaps more closely resembles the formation of separate sister chromatids during DNA replication. [source] Inactivation of MAPK affects centrosome assembly, but not actin filament assembly, in mouse oocytes maturing in vitroMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 7 2007Seung-Eun Lee Abstract Mitogen-activated protein kinase (MAPK) plays a crucial role in meiotic maturation of mouse oocytes. In order to understand the mechanism by which MAPK regulates meiotic maturation, we examined the effects of the MAPK pathway inhibitor U0126 on microtubule organization, ,-tubulin and nuclear mitotic apparatus protein (NuMA) distribution, and actin filament assembly in mouse oocytes maturing in vitro. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK was inactive in fully grown germinal vesicle (GV) oocytes. Phosphorylated MAPK was first detected 3 hr after the initiation of maturation cultures, was fully active at 6 hr, and remained active until metaphase II. Treatment of GV stage oocytes with 20 µM U0126 completely blocked MAPK phosphorylation, but did not affect GV breakdown (GVBD). However, the oocytes did not progress to the Metaphase I stage, which would normally occur after 9 hr in the maturation cultures. The inhibition of MAPK resulted in abnormal spindles and abnormal distributions of ,-tubulin and NuMA, but did not affect actin filament assembly. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, the meiotic abnormalities caused by U0126, a specific inhibitor of MAPK signaling, indicate that MAPK plays an important regulatory role in microtubule and centrosome assembly, but not actin filament assembly. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. Mol. Reprod. Dev. 74: 904,911, 2007. © 2007 Wiley-Liss, Inc. [source] Deregulation of Aurora kinase gene expression in human testicular germ cell tumoursANDROLOGIA, Issue 4 2010E. Baldini Summary The Aurora kinases regulate chromosome segregation and cytokinesis, and alterations in their expression associate with cell malignant transformation. In this study, we demonstrated by qRT-PCR analysis of 14 seminomas that Aurora-A mRNA was, with respect to control tissues, augmented in five of 14 tumour tissues by 2.17 ± 0.30 fold (P < 0.05) and reduced in 9 to 0.38 ± 0.10 (P < 0.01). Aurora-B mRNA was increased in 11 tumour tissues by 4.33 ± 0.82 fold (P < 0.01) and reduced in 3 to 0.41 ± 0.11 fold. Aurora-C mRNA was reduced to 0.20 ± 0.32 fold (P < 0.01) in 13 seminomas and up-regulated in one case. Western blot experiments, performed on protein extracts of nine seminomas and six normal testes, showed an up-regulation of Aurora-B protein by 10.14 ± 3.51 fold (P < 0.05), while Aurora-A protein was found increased in four seminomas by 2.16 ± 0.43 (P < 0.05), unchanged in three and reduced in two tumour tissues. Aurora-C protein was increased by 9.2 ± 2.90 fold (P < 0.05), suggesting that post-transcriptional mechanisms modulate its expression. In conclusion, we demonstrated that expression of Aurora kinases is deregulated in seminomas, suggesting that they may play a role in the progression of testicular cancers. [source] TEM, FISH and molecular studies in infertile men with pericentric inversion of chromosome 9ANDROLOGIA, Issue 4 2006G. Collodel Summary Pericentric inversions involving the secondary constriction (qh) region of chromosome 9 are considered to be normal variants of human karyotype. A number of investigators have suggested that chromosomal anomalies can contribute to human infertility causing spermatogenetic derangement. The present study was aimed at verifying the influence of chromosome 9 inversion on human spermatogenesis. Semen samples of 18 male carriers of chromosome 9 inversion, analysed by light microscopy, revealed that five patients were azoospermic. PCR analysis demonstrated that two of them also had Y microdeletions. The other 13 showed generally normal sperm concentrations and reduced motility. The morphological characteristics of sperm were studied by TEM and the data were elaborated by a mathematical formula. Sperm pathologies resulted more frequently in the studied group compared to controls, particularly apoptosis. Partial sequences of the A-kinase anchoring protein (Akap) 4 and 3 genes were performed in all patients, as a previous study by our group highlighted Dysplasia of Fibrous Sheath (DFS) defect in two men with inv 9 investigations. The possible effect of chromosome 9 inversion on meiotic chromosome segregation was investigated by FISH, which showed an increased incidence of diploidy. We hypothesized that this inversion could have variable effects on spermatogenesis, from azoospermia to severely altered sperm morphology, motility and meiotic segregation. [source] Preliminary X-ray crystallographic analysis of the breakage,reunion domain of the GyrA subunit of DNA gyrase from Colwellia psychrerythraea strain 34HACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2010Ha Yun Jung DNA gyrase is a type II topoisomerase that is essential for chromosome segregation and cell division owing to its ability to modify the topological forms of bacterial DNA. In this study, the N-terminal breakage,reunion domain of the GyrA subunit of DNA gyrase from Colwellia psychrerythraea 34H was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.60,Å resolution using a synchrotron-radiation source. The crystal belonged to space group P212121, with unit-cell parameters a = 98.98, b = 101.56, c = 141.83,Å. The asymmetric unit contained two molecules, with a corresponding VM of 3.18,Å3,Da,1 and a solvent content of 59.9%. [source] Crystallization and preliminary X-ray crystallographic analysis of DNA gyrase GyrB subunit from Xanthomonas oryzae pv. oryzaeACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 1 2010Ha Yun Jung DNA gyrase is a type II topoisomerase that is essential for chromosome segregation and cell division owing to its ability to modify the topological forms of bacterial DNA. In this study, the N-terminal fragment of the GyrB subunit of DNA gyrase from Xanthomonas oryzae pv. oryzae was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.10,Å resolution using a synchrotron-radiation source. The crystal belonged to space group I41, with unit-cell parameters a = b = 110.27, c = 70.75,Å. The asymmetric unit contained one molecule, with a VM of 2.57,Å3,Da,1 and a solvent content of 50.2%. [source] Damage-induced reactivation of cohesin in postreplicative DNA repairBIOESSAYS, Issue 1 2008Alexander R. Ball Jr Cohesin establishes sister-chromatid cohesion during S phase to ensure proper chromosome segregation in mitosis. It also facilitates postreplicative homologous recombination repair of DNA double-strand breaks by promoting local pairing of damaged and intact sister chromatids. In G2 phase, cohesin that is not bound to chromatin is inactivated, but its reactivation can occur in response to DNA damage. Recent papers by Koshland's and Sjögren's groups describe the critical role of the known cohesin cofactor Eco1 (Ctf7) and ATR checkpoint kinase in damage-induced reactivation of cohesin, revealing an intricate mechanism that regulates sister-chromatid pairing to maintain genome integrity.1,2 BioEssays 30:5,9, 2008. © 2007 Wiley Periodicals, Inc. [source] Shugoshin: a centromeric guardian senses tensionBIOESSAYS, Issue 6 2005Sarah E. Goulding To ensure accurate chromosome segregation during mitosis, the spindle checkpoint monitors chromosome alignment on the mitotic spindle. Indjeian and colleagues have investigated the precise role of the shugoshin 1 protein (Sgo1p) in this process in budding yeast.1 The Sgo proteins were originally identified as highly conserved proteins that protect cohesion at centromeres during the first meiotic division. Together with other recent findings,2 the study highlighted here has identified Sgo1 as a component that informs the mitotic spindle checkpoint when spindle tension is perturbed. This discovery has provided a molecular link between sister chromatid cohesion and tension-sensing at the kinetochore,microtubule interface. BioEssays 27:588,591, 2005. © 2005 Wiley Periodicals, Inc. [source] Detection of unpaired DNA at meiosis results in RNA-mediated silencingBIOESSAYS, Issue 2 2003Michael J. Hynes During meiosis, homologous chromosomes must pair in order to permit recombination and correct chromosome segregation to occur. Two recent papers1,2 show that meiotic pairing is also important for correct gene expression during meiosis. They describe data for the filamentous fungus Neurospora crassa that show that a lack of pairing generated by ectopic integration of genes can result in silencing of genes expressed during meiosis. This can result in aberrant meioses whose defects are specific to the function of the unpaired gene. Furthermore, mutations affecting the silencing mechanism have been selected in a gene encoding a putative RNA-dependent RNA polymerase. This finding indicates the involvement of a meiotic specific post-transcriptional gene silencing mechanism (PTGS) similar to that observed in vegetative cells in N. crassa and other organisms. Finally, this gene product is essential for normal meiosis, suggesting that RNA-dependent processes are fundamental to the sexual cycle. BioEssays 25:99,103, 2003. © 2003 Wiley Periodicals, Inc. [source] Conquering the complex world of human septins: implications for health and diseaseCLINICAL GENETICS, Issue 6 2010EA Peterson Peterson EA and Petty EM. Conquering the complex world of human septins: implications for health and disease. Septins are highly conserved filamentous proteins first characterized in budding yeast and subsequently identified in must eukaryotes. Septins can bind and hydrolyze GTP, which is intrinsically related to their formation of septin hexamers and functional protein interactions. The human septin family is composed of 14 loci, SEPT1-SEPT14, which encode dozens of different septin proteins. Their central GTPase and polybasic domain regions are highly conserved but they diverge in their N-terminus and/or C-terminus. The mechanism by which the different isoforms are generated is not yet well understood, but one can hypothesize that the use of different promoters and/or alternative splicing could give rise to these variants. Septins perform diverse cellular functions according to tissue expression and their interacting partners. Functions identified to date include cell division, chromosome segregation, protein scaffolding, cellular polarity, motility, membrane dynamics, vesicle trafficking, exocytosis, apoptosis, and DNA damage response. Their expression is tightly regulated to maintain proper filament assembly and normal cellular functions. Alterations of these proteins, by mutation or expression changes, have been associated with a variety of cancers and neurological diseases. The association of septins with cancer results from alterations of expression in solid tumors or translocations in leukemias [mixed lineage leukemia (MLL)]. Expression changes in septins have also been associated with neurological conditions such as Alzheimer's and Parkinson's disease, as well as retinopathies, hepatitis C, spermatogenesis and Listeria infection. Pathogenic mutations of SEPT9 were identified in the autosomal dominant neurological disorder hereditary neuralgic amyotrophy (HNA). Human septin research over the past decade has established their importance in cell biology and human disease. Further functional characterization of septins is crucial to our understanding of their possible diagnostic, prognostic, and therapeutic applications. [source] Cornelia de Lange syndrome, cohesin, and beyondCLINICAL GENETICS, Issue 4 2009J Liu Cornelia de Lange syndrome (CdLS) (OMIM #122470, #300590 and #610759) is a dominant genetic disorder with multiple organ system abnormalities which is classically characterized by typical facial features, growth and mental retardation, upper limb defects, hirsutism, gastrointestinal and other visceral system involvement. Mutations in three cohesin proteins, a key regulator of cohesin, NIPBL, and two structural components of the cohesin ring SMC1A and SMC3, etiologically account for about 65% of individuals with CdLS. Cohesin controls faithful chromosome segregation during the mitotic and meiotic cell cycles. Multiple proteins in the cohesin pathway are also involved in additional fundamental biological events such as double-strand DNA break repair and long-range regulation of transcription. Moreover, chromosome instability was recently associated with defective sister chromatid cohesion in several cancer studies, and an increasing number of human developmental disorders is being reported to result from disruption of this pathway. Here, we will discuss the human disorders caused by alterations of cohesin function (termed ,cohesinopathies'), with an emphasis on the clinical manifestations of CdLS and mechanistic studies of the CdLS-related proteins. [source] |