| |||
Chondroitinase ABC (chondroitinase + abc)
Selected AbstractsRepulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: Roles of Contactin and notochord-derived chondroitin sulfate proteoglycansDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2005Naoko Fujita An immunoglobulin superfamily neuronal adhesion molecule, Contactin, has been implicated in axon guidance of spinal sensory neurons in Xenopus embryos. To identify the guidance signaling molecules that Contactin recognizes in tailbud embryos, an in situ binding assay was performed using recombinant Contactin-alkaline phosphatase fusion protein (Contactin-AP) as a probe. In the assay of whole-mount or sectioned embryos, Contactin-AP specifically bound to the notochord and its proximal regions. This binding was completely blocked by either digestion of embryo sections with chondroitinase ABC or pretreatment of Contactin-AP with chondroitin sulfate A. When the spinal cord and the notochord explants were co-cultured in collagen gel, growing Contactin-positive spinal axons were repelled by notochord-derived repulsive activity. This repulsive activity was abolished by the addition of either a monoclonal anti-Contactin antibody, chondroitin sulfate A or chondroitinase ABC to the culture medium. An antibody that recognizes chondroitin sulfate A and C labeled immunohistochemically the notochord in embryo sections and the collagen gel matrix around the cultured notochord explant. Addition of chondroitinase ABC into the culture eliminated the immunoreactivity in the gel matrix. These results suggest that the notochord-derived chondroitin sulfate proteoglycan acts as a repulsive signaling molecule that is recognized by Contactin on spinal sensory axons. [source] Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal netsDEVELOPMENTAL NEUROBIOLOGY, Issue 5 2007Alexander Dityatev Abstract Extracellular matrix molecules,including chondroitin sulfate proteoglycans, hyaluronan, and tenascin-R,are enriched in perineuronal nets (PNs) associated with subsets of neurons in the brain and spinal cord. In the present study, we show that similar cell type-dependent extracellular matrix aggregates are formed in dissociated cell cultures prepared from early postnatal mouse hippocampus. Starting from the 5th day in culture, accumulations of lattice-like extracellular structures labeled with Wisteria floribunda agglutinin were detected at the cell surface of parvalbumin-expressing interneurons, which developed after 2,3 weeks into conspicuous PNs localized around synaptic contacts at somata and proximal dendrites, as well as around axon initial segments. Physiological recording and intracellular labeling of PN-expressing neurons revealed that these are large fast-spiking interneurons with morphological characteristics of basket cells. To study mechanisms of activity-dependent formation of PNs, we performed pharmacological analysis and found that blockade of action potentials, transmitter release, Ca2+ permeable AMPA subtype of glutamate receptors or L-type Ca2+ voltage-gated channels strongly decreased the extracellular accumulation of PN components in cultured neurons. Thus, we suggest that Ca2+ influx via AMPA receptors and L-type channels is necessary for activity-dependent formation of PNs. To study functions of chondroitin sulfate-rich PNs, we treated cultures with chondroitinase ABC that resulted in a prominent reduction of several major PN components. Removal of PNs did not affect the number and distribution of perisomatic GABAergic contacts but increased the excitability of interneurons in cultures, implicating the extracellular matrix of PNs in regulation of interneuronal activity. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of jointsJOURNAL OF ANATOMY, Issue 3 2001P. KUMAR The uppermost superficial surface layer of articular cartilage, the ,lamina splendens' which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at ,10 °C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 ,m in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. [source] Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migrationJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004Joan Villena Skeletal muscle regeneration is a complex process in which many agents are involved. When skeletal muscle suffers an injury, quiescent resident myoblasts called satellite cells are activated to proliferate, migrate, and finally differentiate. This whole process occurs in the presence of growth factors, the extracellular matrix (ECM), and infiltrating macrophages. We have shown previously that different proteoglycans, either present at the plasma membrane or the ECM, are involved in the differentiation process by regulating growth factor activity. In this article, we evaluated the role of glycosaminoglycans (GAGs) in myoblast proliferation and migration, using C2C12, a satellite cell-derived cell line. A synergic stimulatory effect on myoblast proliferation was observed with hepatocyte growth factor (HGF) and fibroblast growth factor type 2 (FGF-2), which was dependent on cell sulfation. The GAG dermatan sulfate (DS) enhanced HGF/FGF-2-dependent proliferation at 1,10 ng/ml. However, decorin, a proteoglycan containing DS, was unable to reproduce this enhanced proliferative effect. On the other hand, HGF strongly increased myoblast migration. The HGF-dependent migratory process required the presence of sulfated proteoglycans/GAGs present on the myoblast surface, as inhibition of both cell sulfation, and heparitinase (Hase) and chondroitinase ABC (Chabc) treatment of myoblasts, resulted in a very strong inhibition of cell migration. Among the GAGs analyzed, DS most increased HGF-dependent myoblast migration. Taken together, these findings showed that DS is an enhancer of growth factor-dependent proliferation and migration, two critical processes involved in skeletal muscle formation. J. Cell. Physiol. 198: 169,178, 2004© 2003 Wiley-Liss, Inc. [source] Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neuronsJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Naoki Sotogaku Abstract In dopaminergic neurons, chondroitin sulfate (CS) proteoglycans play important roles in neuronal development and regeneration. However, due to the complexity and heterogeneity of CS, the precise structure of CS with biological activity and the molecular mechanisms underlying its influence on dopaminergic neurons are poorly understood. In this study, we investigated the ability of synthetic CS oligosaccharides and natural polysaccharides to promote the neurite outgrowth of mesencephalic dopaminergic neurons and the signaling pathways activated by CS. CS-E polysaccharide, but not CS-A, -C or -D polysaccharide, facilitated the neurite outgrowth of dopaminergic neurons at CS concentrations within the physiological range. The stimulatory effect of CS-E polysaccharide on neurite outgrowth was completely abolished by its digestion into disaccharide units with chondroitinase ABC. Similarly to CS-E polysaccharide, a synthetic tetrasaccharide displaying only the CS-E sulfation motif stimulated the neurite outgrowth of dopaminergic neurons, whereas a CS-E disaccharide or unsulfated tetrasaccharide had no effect. Analysis of the molecular mechanisms revealed that the action of the CS-E tetrasaccharide was mediated through midkine-pleiotrophin/protein tyrosine phosphatase , and brain-derived neurotrophic factor/tyrosine kinase B receptor pathways, followed by activation of the two intracellular phospholipase C (PLC) signaling cascades: PLC/protein kinase C and PLC/inositol 1,4,5-triphosphate/inositol 1,4,5-triphosphate receptor signaling leading to intracellular Ca2+ concentration-dependent activation of Ca2+/calmodulin-dependent kinase II and calcineurin. These results indicate that a specific sulfation motif, in particular the CS-E tetrasaccharide unit, represents a key structural determinant for activation of midkine, pleiotrophin and brain-derived neurotrophic factor-mediated signaling, and is required for the neuritogenic activity of CS in dopaminergic neurons. [source] Developmental change and function of chondroitin sulfate deposited around cerebellar Purkinje cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2005Yumiko Shimazaki Abstract Chondroitin sulfate is a long sulfated polysaccharide with enormous structural heterogeneity that binds with various proteins, such as growth factors, in a structure-dependent manner. In this study, we analyzed the expression of chondroitin sulfate in the postnatally developing cerebellar cortex by using three monoclonal antibodies against chondroitin sulfate, MO-225, 2H6, and CS-56, which recognize different structural domains in this polysaccharide. During the first postnatal week, the patterns of immunohistochemical staining made by these antibodies were quite similar, and the molecular layer, the granule cell layer, and Bergmann glial fibers in the external granular layer were densely stained. After postnatal day 12 (P12), the expression of 2H6 epitopes was down-regulated in the molecular layer, and the expression of CS-56 epitopes in this layer was also reduced after P16. On the other hand, the strong expression of MO-225 epitopes, GlcA(2S),1,3GalNAc(6S) (D unit)-containing structures, remained until adulthood. These chondroitin sulfate epitopes were observed around Purkinje cells, including cell soma and dendrites. Detailed immunohistochemical analysis suggested that chondroitin sulfate was deposited between Purkinje cell surfaces and the processes of Bergmann glia. Furthermore, the amount of pleiotrophin, a heparin-binding growth factor, in the cultured cerebellar slices was remarkably diminished after treatment with chondroitinase ABC or D unit-rich chondroitin sulfate. With the previous findings that pleiotrophin binds to D unit-rich chondroitin sulfate, we suggest that the D-type structure is important for the signaling of pleiotrophin, which plays roles in Purkinje cell,Bergmann glia interaction, and that the structural changes of chondroitin sulfate regulate this signaling pathway. © 2005 Wiley-Liss, Inc. [source] An in vivo model of degenerative disc diseaseJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003Jason P. Norcross Although the precise etiology of low back pain is disputed, degeneration of the intervertebral disc is believed to play an important role. Many animal models have been described which reproduce the changes found in degenerative disc disease, but none allow for efficient, large-scale testing of purported therapeutic agents. The purpose of this study was to develop a simple animal model resembling degenerative disc disease using the intervertebral discs found in the tails of rats. The proximal two intervertebral discs in the tails of 20 rats were injected with either chondroitinase ABC or control (phosphate buffered saline, PBS). The tails were harvested at 2 weeks, and measurements were made of intervertebral disc height (measured radiographically and histologically), biomechanics (stiffness, hysteresis, and residual deformation), and histologic appearance. Treatment with chondroitinase ABC resulted in a significant loss in intervertebral disc height (radiographic intervertebral disc height, p < 0.001; histologic intervertebral disc height, p < 0.001) and significant increases in all biomechanical parameters (stiffness, p < 0.001; hysteresis, p < 0.006; residual deformation, p < 0.004) compared to PBS controls. Intervertebral discs treated with chondroitinase ABC had significantly lower histologic grades for each grading category (nucleus pulposus (NP), annulus fibrosus, and proteoglycan staining) compared to controls. The results of injury with chondroitinase ABC were similar to the findings in degenerative disc disease: reduced intervertebral disc height, diminished proteoglycan content, loss of NP cells, and increased stiffness of the disc. Thus, the model appears to be a reasonable tool for the preliminary in vivo evaluation of proposed treatments for degenerative disc disease. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] |