Chondrogenic Potential (chondrogenic + potential)

Distribution by Scientific Domains


Selected Abstracts


Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment

DEVELOPMENTAL DYNAMICS, Issue 2 2006
Atsushi Ido
Abstract There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells. Developmental Dynamics 235:361,367, 2006. © 2005 Wiley-Liss, Inc. [source]


Cell dissociation experiments reveal that positional information operates in the chicken frontonasal mass

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 3 2006
Masayoshi Kawakami
Abstract In this study we examined the role of cell,cell affinity in patterning the avian frontonasal mass,the facial prominence that forms the prenasal cartilage and premaxillary bone. Reconstituted cell pellets derived from undifferentiated, frontonasal mass mesenchyme were recombined with facial epithelium and grafted to host embryos to continue development. We determined that the cells reestablished a recognizable frontonasal mass pattern and were able to induce egg teeth in overlying ectoderm. Further analysis revealed there were region-specific differences in the cartilage patterns such that central recombinations were more likely to form a straight cartilage rod, whereas lateral mesenchyme pellets were more likely to form complex, branched cartilage patterns. The basis for the pattern differences was that central mesenchyme cells showed preferential clustering in the cartilage condensations in the center of the graft, whereas lateral cells were spread throughout as determined by dye labeling and quail chicken chimeras. The disruption of cell contacts temporarily delayed onset of gene expression but by 48 h both Msx2 and Dlx5 were expressed. Msx2, in particular, had very clear edges to the expression domains and often the pattern of expression correlated with type of cartilage morphology. Together, these data suggest that an important patterning mechanism in the face is the ability of mesenchymal cells to sort out according to position and that Msx2 may help repress chondrogenic potential in the lateral frontonasal mass. genesis 44:105,114, 2006. © 2006 Wiley-Liss, Inc. [source]


Expression of cartilage-related genes in bovine synovial tissue

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2007
Nahoko Shintani
Abstract The synovium contains mesenchymal stem cells with chondrogenic potential. Although synovial and articular cartilage tissue develop from a common pool of mesenchymal cells, little is known about their genetic commonalities. In the present study, the mRNA levels for several cartilage-related proteins, namely, cartilage oligomeric matrix protein (COMP), Sox9, aggrecan, and collagen types I, II, IX, X, and XI, were measured using the real-time polymerase chain reaction. Our data reveal the synovium of calf metacarpal joints to physiologically express not only type I collagen but also COMP, Sox9, aggrecan, and collagen types X and XI. The mRNA levels for the latter five proteins lie between 2% and 15% of those in articular cartilage. We speculate that these genes are being expressed by chondroprogenitor cells, whose presence in the synovium reflects a common ontogenetic phase in the fetal development of this tissue and of articular cartilage. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25: 813,819, 2007 [source]


Differentiation of human mesenchymal stem cells and articular chondrocytes: Analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2007
Camilla Karlsson
Abstract Mesenchymal stem cells (MSCs) are a candidate for replacing chondrocytes in cell-based repair of cartilage lesions. However, it has not been clarified if these cells can acquire the hyaline phenotype, and whether chondrocytes and MSCs show the same expression patterns of critical control genes in development. In order to study this, articular chondrocytes and iliac crest derived MSCs were allowed to differentiate in pellet mass cultures. Gene expression of markers for the cartilage phenotype, helix-loop-helix (HLH) transcription factors, and chondrogenic transcription factors were analyzed by real-time PCR. Matrix production was assayed using biochemical analysis for hydroxyproline, glycosaminoglycans, and immunohistochemistry for collagen types I and II. Significantly decreased expression of collagen type I was accompanied by increased expression of collagen types IIA and IIB during differentiation of chondrocytes, indicating differentiation towards a hyaline phenotype. Chondrogenesis in MSCs on the other hand resulted in up-regulation of collagen types I, IIA, IIB, and X, demonstrating differentiation towards cartilage of a mixed phenotype. Expression of HES1 increased significantly during chondrogenesis in chondrocytes while expression in MSCs was maintained at a low level. The HLH gene HES5 on the other hand was only detected in chondrocytes. Expression of ID1 decreased significantly in chondrocytes while the opposite was seen in MSCs. These findings suggest that chondrocytes and MSCs differentiated and formed different subtypes of cartilage, the hyaline and a mixed cartilage phenotype, respectively. Differentially regulated HLH genes indicated the possibility for HLH proteins in regulating chondrogenic differentiation. This information is important to understand the potential use of MSCs in cartilage repair. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:152,163, 2007 [source]


Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells

THE JOURNAL OF GENE MEDICINE, Issue 1 2006
Jung Park
Abstract Background Adult primary mesenchymal cells of different origin which can be obtained with minor donor site morbidity are considered for articular cartilage repair. This study aims at a comparison of their chondrogenic potential. Methods Mesenchymal cells were isolated from perichondrium/periosteum, bone marrow or fat of adult rats and found to be positive for the stem-cell-related antigens Sca-1, c-Kit, CD10, CD13 and CD90 by reverse transcription polymerase chain reaction (RT-PCR). Chondrogenic differentiation was induced by applying recombinant bone morphogenetic protein-2 (BMP-2) or adenoviral vectors carrying BMP-2 cDNA, followed by micromass culture. The stimulated cells were characterized by RT-PCR, cell proliferation and apoptosis assays. Expression of aggrecan, collagen type I, II, IX and X and alkaline phosphatase genes was analyzed by RT-PCR, immunofluorescence and immunohistochemistry in comparison with unstimulated control cells. Adenovirally stimulated cells were transplanted into mechanically generated partial-thickness cartilage lesions in the patellar groove of the rat femur. Quality and integration of the repair tissues were assessed by histochemical and immunohistochemical methods. Results Stimulation with BMP-2 or AdBMP-2 led to an up-regulation of cartilage-specific gene expression in all three cell populations studied, most rapidly and prominently in the perichondrial/periosteal cells, which showed a 3200-fold increase of type II collagen mRNA and reached the highest absolute levels of type II and IX collagen transcripts after stimulation. Similar results were obtained for the bone marrow stromal cells (BMSC), while the respective transcript levels in fat stromal cells declined after an initial more than 30-fold elevation. Following transplantation in vivo, AdBMP-2-infected perichondrial/periosteal cells produced a proteoglycan-rich, type II collagen-positive matrix with only faint staining for type I collagen. The repair tissue originating from AdBMP-2-infected BMSC showed less intense type II collagen staining, but a relatively proteoglycan-rich matrix, weakly positive for type I collagen. Transgene-activated fat stromal cells formed rather fibrous tissue mainly composed of type I collagen. Unstimulated cells of the three different populations gave only rise to fibrous tissue. Conclusions Perichondrium/periosteum-derived cells and BMSC seem superior to cells isolated from fat with respect to forming hyaline cartilaginous tissue. A chondrogenic stimulus, e.g. by transfer of BMP-2 cDNA, appears to be required for initiation and support of chondrogenic differentiation. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Sex differences of chondrogenic progenitor cells in late stages of osteoarthritis

ARTHRITIS & RHEUMATISM, Issue 4 2010
Sebastian Koelling
Objective Osteoarthritis (OA), a mainly degenerative disease, is known to be multifactorial in origin. Gene expression patterns vary between populations and sexes. Sex hormone receptors have been described in the cartilage tissue of animals and humans. We undertook this study to determine whether the regenerative potential of chondrogenic progenitor cells (CPCs) present in the arthritic tissue during the late stages of human OA might also be subject to sex-specific differences and influenced by sex steroids. Methods We analyzed sex-specific differences in the regenerative potential of CPCs and the involvement of sex hormones in vitro in cartilage samples from patients with late-stage knee OA, using electrochemiluminescence immunoassay, microarray analysis, real-time reverse transcription,polymerase chain reaction, immunohistochemistry, Western blot analysis, fluorescence-activated cell sorting, and cell culture. Results We detected expression of estrogen and testosterone in the OA synovial fluid as well as CPCs positive for estrogen receptor , (ER,), ER,, and androgen receptor. Both hormones influenced the expression of all 3 receptor genes as well as the chondrogenic potential of CPCs by regulating gene expression of Sox9, Runx2, type II collagen, and type I collagen. We found regulatory effects on the collagens via Sox9 and Runx2 as well as regulatory effects independent of these transcription factors. These effects were sex-specific and relied on hormone concentrations. Conclusion Physiologic concentrations of testosterone in men and premenopausal concentrations of estrogen in women have a positive effect on the chondrogenic potential of CPCs in vitro. Therefore, strategies of hormone replacement in the synovial fluid of women and men might have beneficial effects on the regenerative potential of arthritic cartilage tissue in late stages of human OA. [source]


Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor ,1

ARTHRITIS & RHEUMATISM, Issue 12 2009
Toshiyuki Nakagawa
Objective Human embryonic stem cells (ESCs) provide an unlimited supply of pluripotent cells for articular cartilage tissue engineering and regenerative medicine applications. Articular cartilage is an avascular tissue with precise polarity and organization comprising 3 distinct functional zones: surface, middle, and deep. To date, attempts at differentiating human ESCs into articular chondrocytes have been unsuccessful. The majority of studies have focused on chondrogenic (but not specifically articular cartilage) differentiation. Furthermore, previous investigations of induction of chondrogenesis by human ESCs required embryoid body formation; however, embryoid body formation often results in heterogeneous differentiation. The present study was undertaken to determine the in vitro chondrogenic potential of bone morphogenetic protein 7 (BMP-7) and transforming growth factor ,1 (TGF,1),induced human ESC differentiation toward the articular cartilage phenotype. Methods Dissociated single human ESCs were cultured and passaged on a gelatin-coated flask. The human ESCs were cultured as an aggregate in a pellet culture system for 14 days in basal chondrogenic medium (CM), CM with TGF,1, CM with BMP-7, or CM with both TGF,1 and BMP-7. Results The size and wet weight of the cartilage pellets and glycosaminoglycan levels increased, with the smallest, intermediate, and greatest increases, respectively, observed with CM plus TGF,1 treatment, CM plus BMP-7 treatment, and CM plus TGF,1 and BMP-7 treatment (compared with CM treatment alone). The largest size and highest weight of the pellet was in the group in which TGF,1 and BMP-7 were added to the medium. However, expression of the genes for cartilage-specific aggrecan and type II collagen II, as assessed by determination of messenger RNA levels, was highest in the BMP-7,treated group. Superficial zone protein (SZP)/lubricin, a marker of the superficial zone articular chondrocyte, was not detectable under identical culture conditions. Conclusion These results demonstrate an efficient and reproducible model system of human ESC-induced chondrogenesis, using a novel direct plating method in which intervening embryoid body formation does not occur. Further work is needed for optimization of conditions to obtain the articular cartilage phenotype that includes the superficial zone marker as demonstrated by SZP/lubricin synthesis. [source]


In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes

ARTHRITIS & RHEUMATISM, Issue 2 2009
Wei-Hong Chen
Objective Osteoarthritis is characterized by an imbalance in cartilage homeostasis, which could potentially be corrected by mesenchymal stem cell (MSC),based therapies. However, in vivo implantation of undifferentiated MSCs has led to unexpected results. This study was undertaken to establish a model for preconditioning of MSCs toward chondrogenesis as a more effective clinical tool for cartilage regeneration. Methods A coculture preconditioning system was used to improve the chondrogenic potential of human MSCs and to study the detailed stages of chondrogenesis of MSCs, using a human MSC line, Kp-hMSC, in commitment cocultures with a human chondrocyte line, hPi (labeled with green fluorescent protein [GFP]). In addition, committed MSCs were seeded into a collagen scaffold and analyzed for their neocartilage-forming ability. Results Coculture of hPi-GFP chondrocytes with Kp-hMSCs induced chondrogenesis, as indicated by the increased expression of chondrogenic genes and accumulation of chondrogenic matrix, but with no effect on osteogenic markers. The chondrogenic process of committed MSCs was initiated with highly activated chondrogenic adhesion molecules and stimulated cartilage developmental growth factors, including members of the transforming growth factor , superfamily and their downstream regulators, the Smads, as well as endothelial growth factor, fibroblast growth factor, insulin-like growth factor, and vascular endothelial growth factor. Furthermore, committed Kp-hMSCs acquired neocartilage-forming potential within the collagen scaffold. Conclusion These findings help define the molecular markers of chondrogenesis and more accurately delineate the stages of chondrogenesis during chondrocytic differentiation of human MSCs. The results indicate that human MSCs committed to the chondroprogenitor stage of chondrocytic differentiation undergo detailed chondrogenic changes. This model of in vitro chondrogenesis of human MSCs represents an advance in cell-based transplantation for future clinical use. [source]


Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle,derived stem cells

ARTHRITIS & RHEUMATISM, Issue 1 2009
Seiji Kubo
Objective To investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the effect of blocking VEGF with its antagonist, soluble Flt-1 (sFlt-1), on chondrogenesis, using muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle. Methods The direct effect of VEGF on the in vitro chondrogenic ability of mouse MDSCs was tested using a pellet culture system, followed by real-time quantitative polymerase chain reaction (PCR) and histologic analyses. Next, the effect of VEGF on chondrogenesis within the synovial joint was tested, using genetically engineered MDSCs implanted into rat osteochondral defects. In this model, MDSCs transduced with a retroviral vector to express bone morphogenetic protein 4 (BMP-4) were coimplanted with MDSCs transduced to express either VEGF or sFlt-1 (a VEGF antagonist) to provide a gain- and loss-of-function experimental design. Histologic scoring was used to compare cartilage formation among the treatment groups. Results Hyaline-like cartilage matrix production was observed in both VEGF-treated and VEGF-blocked (sFlt-1,treated) pellet cultures, but quantitative PCR revealed that sFlt-1 treatment improved the expression of chondrogenic genes in MDSCs that were stimulated to undergo chondrogenic differentiation with BMP-4 and transforming growth factor ,3 (TGF,3). In vivo testing of articular cartilage repair showed that VEGF-transduced MDSCs caused an arthritic change in the knee joint, and sFlt-1 improved the MDSC-mediated repair of articular cartilage, compared with BMP-4 alone. Conclusion Soluble Flt-1 gene therapy improved the BMP-4, and TGF,3-induced chondrogenic gene expression of MDSCs in vitro and improved the persistence of articular cartilage repair by preventing vascularization and bone invasion into the repaired articular cartilage. [source]


The influence of sex on the chondrogenic potential of muscle-derived stem cells: Implications for cartilage regeneration and repair

ARTHRITIS & RHEUMATISM, Issue 12 2008
Tomoyuki Matsumoto
Objective To explore possible differences in muscle-derived stem cell (MDSC) chondrogenic differentiation in vitro and articular cartilage regeneration in vivo between murine male MDSCs (M-MDSCs) and female MDSCs (F-MDSCs). Methods Three different populations of M- and F-MDSCs (n = 3 of each sex) obtained via preplate technique, which separates cells based on their variable adhesion characteristics, were compared for their in vitro chondrogenic potential using pellet culture. Cells were assayed with and without retroviral transduction to express bone morphogenetic protein 4 (BMP-4). The influence of both expression of stem cell marker Sca1 and in vitro expansion on the chondrogenic potential of M- and F-MDSCs was also determined. Additionally, BMP-4,transduced M- and F-MDSCs were applied to a full-thickness articular cartilage defect (n = 5 each) on the femur of a nude rat, and the quality of the repaired tissue was evaluated by macroscopic and histologic examination. Results With and without BMP-4 gene transduction, M-MDSCs produced significantly larger pellets with a richer extracellular matrix, compared with F-MDSCs. Sca1 purification influenced the chondrogenic potential of MDSCs, especially M-MDSCs. Long-term culture did not affect the chondrogenic potential of M-MDSCs but did influence F-MDSCs. M-MDSCs repaired articular cartilage defects more effectively than did F-MDSCs at all time points tested, as assessed both macroscopically and histologically. Conclusion Our findings demonstrate that sex influences the chondrogenic differentiation and articular cartilage regeneration potential of MDSCs. Compared with female MDSCs, male MDSCs display more chondrogenic differentiation and better cartilage regeneration potential. [source]


Cartilage-like gene expression in differentiated human stem cell spheroids: A comparison of bone marrow,derived and adipose tissue,derived stromal cells

ARTHRITIS & RHEUMATISM, Issue 2 2003
Anja Winter
Objective To compare the chondrogenic potential of human bone marrow,derived mesenchymal stem cells (BMSC) and adipose tissue,derived stromal cells (ATSC), because the availability of an unlimited cell source replacing human chondrocytes could be strongly beneficial for cell therapy, tissue engineering, in vitro drug screening, and development of new therapeutic options to enhance the regenerative capacity of human cartilage. Methods Quantitative gene expression of common cartilage and cell interaction molecules was analyzed using complementary DNA array technology and reverse transcription,polymerase chain reaction during optimization of cell differentiation, in order to achieve a molecular phenotype similar to that of chondrocytes in cartilage. Results The multilineage potential of BMSC and ATSC was similar according to cell morphology and histology, but minor differences in marker gene expression occurred in diverse differentiation pathways. Although chondrogenic differentiation of BMSC and ATSC was indistinguishable in monolayer and remained partial, only BMSC responded (with improved chondrogenesis) to a shift to high-density 3-dimensional cell culture, and reached a gene expression profile highly homologous to that of osteoarthritic (OA) cartilage. Conclusion Hypertrophy of chondrocytes and high matrix-remodeling activity in differentiated BMSC spheroids and in OA cartilage may be the basis for the strong similarities in gene expression profiles between these samples. Differentiated stem cell spheroids represent an attractive tool for use in drug development and identification of drug targets in OA cartilage,like tissue outside the human body. However, optimization of differentiation protocols to achieve the phenotype of healthy chondrocytes is desired for cell therapy and tissue engineering approaches. [source]


Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis

ARTHRITIS & RHEUMATISM, Issue 3 2002
J. Mary Murphy
Objective Mesenchymal stem cells (MSCs) are resident in the bone marrow throughout normal adult life and have the capacity to differentiate along a number of connective tissue pathways, among them bone, cartilage, and fat. To determine whether functionally normal MSC populations may be isolated from patients with advanced osteoarthritis (OA), we have compared cells from patients undergoing joint replacement with cells from normal donors. Cell populations were compared in terms of yield, proliferation, and capacity to differentiate. Methods MSCs were prepared from bone marrow aspirates obtained from the iliac crest or from the tibia/femur during joint surgery. In vitro chondrogenic activity was measured as glycosaminoglycan and type II collagen deposition in pellet cultures. Adipogenic activity was measured as the accumulation of Nile Red O-positive lipid vacuoles, and osteogenic activity was measured as calcium deposition and by von Kossa staining. Results Patient-derived MSCs formed colonies in primary culture that were characteristically spindle-shaped with normal morphology. The primary cell yield in 36 of 38 cell cultures from OA donors fell within the range found in cultures from normal donors. However, the proliferative capacity of patient-derived MSCs was significantly reduced. There was a significant reduction in in vitro chondrogenic and adipogenic activity in cultures of patient-derived cells compared with that in normal cultures. There was no significant difference in in vitro osteogenic activity. There was no decline in chondrogenic potential with age in cells obtained from individuals with no evidence of OA. Conclusion These results raise the possibility that the increase in bone density and loss of cartilage that are characteristic of OA may result from changes in the differentiation profile of the progenitor cells that contribute to the homeostatic maintenance of these tissues. [source]


Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2009
Céline Colnot
Abstract Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results show that periosteal injuries heal by endochondral ossification, whereas bone marrow injuries heal by intramembranous ossification, indicating that distinct cellular responses occur within these tissues during repair. Next, lineage analyses were used to track the fate of cells derived from periosteum, bone marrow, and endosteum, a subcompartment of the bone marrow. Skeletal progenitor cells were found to be recruited locally and concurrently from periosteum and/or bone marrow/endosteum during bone repair. Periosteum and bone marrow/endosteum both gave rise to osteoblasts, whereas the periosteum was the major source of chondrocytes. Finally, results show that intrinsic and environmental signals modulate cell fate decisions within these tissues. In conclusion, this study sheds light into the origins of skeletal stem cells/progenitors during bone regeneration and indicates that periosteum, endosteum, and bone marrow contain pools of stem cells/progenitors with distinct osteogenic and chondrogenic potentials that vary with the tissue environment. [source]