Chondrocyte Biology (chondrocyte + biology)

Distribution by Scientific Domains


Selected Abstracts


Lack of oxygen in articular cartilage: consequences for chondrocyte biology

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 2 2010
Jérôme E. Lafont
Summary Controlling the chondrocytes phenotype remains a major issue for cartilage repair strategies. These cells are crucial for the biomechanical properties and cartilage integrity because they are responsible of the secretion of a specific matrix. But chondrocyte dedifferentiation is frequently observed in cartilage pathology as well as in tissue culture, making their study more difficult. Given that normal articular cartilage is hypoxic, chondrocytes have a specific and adapted response to low oxygen environment. While huge progress has been performed on deciphering intracellular hypoxia signalling the last few years, nothing was known about the particular case of the chondrocyte biology in response to hypoxia. Recent findings in this growing field showed crucial influence of the hypoxia signalling on chondrocytes physiology and raised new potential targets to repair cartilage and maintain tissue integrity. This review will thus focus on describing hypoxia-mediated chondrocyte function in the native articular cartilage. [source]


Immortalized cell lines from mouse xiphisternum preserve chondrocyte phenotype

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
Manas K. Majumdar
Chondrocytes are unique to cartilage and the study of these cells in vitro is important for advancing our understanding of the role of these cells in normal homeostasis and disease including osteoarthritis (OA). As there are limitations to the culture of primary chondrocytes, cell lines have been developed to overcome some of these obstacles. In this study, we developed a procedure to immortalize and characterize chondrocyte cell lines from mouse xiphisternum. The cells displayed a polygonal to fibroblastic morphology in monolayer culture. Gene expression studies using quantitative PCR showed that the cell lines responded to bone morphogenetic protein 2 (BMP-2) by increased expression of matrix molecules, aggrecan, and type II collagen together with transcriptional factor, Sox9. Stimulation by IL-1 results in the increased expression of catabolic effectors including MMP-13, nitric oxide synthase, ADAMTS4, and ADAMTS5. Cells cultured in alginate responded to BMP-2 by increased synthesis of proteoglycan (PG), a major matrix molecule of cartilage. IL-1 treatment of cells in alginate results in increased release of PG into the conditioned media. Further analysis of the media showed the presence of Aggrecanase-cleaved aggrecan fragments, a signature of matrix degradation. These results show that the xiphisternum chondrocyte cell lines preserve their chondrocyte phenotype cultured in either monolayer or 3-dimensional alginate bead culture systems. In summary, this study describes the establishment of chondrocyte cell lines from the mouse xiphisternum that may be useful as a surrogate model system to understand chondrocyte biology and to shed light on the underlying mechanism of pathogenesis in OA. J. Cell. Physiol. 209: 551,559, 2006. © 2006 Wiley-Liss, Inc. [source]


Differential expression of ,B-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis

ARTHRITIS & RHEUMATISM, Issue 1 2009
Stijn Lambrecht
Objective Alpha B,crystallin belongs to the family of small heat-shock proteins (HSPs). The role of this protein family in chondrocytes is not well understood. The present study was undertaken to investigate expression levels of ,B-crystallin in chondrocytes isolated from healthy subjects and patients with osteoarthritis (OA), and to explore the functional role of this potentially interesting protein in chondrocyte metabolism. Methods Western blot and real-time reverse transcriptase,polymerase chain reaction (RT-PCR) analyses were performed to determine expression levels of ,B-crystallin in healthy and OA chondrocytes cultured in alginate beads. RNA interference,mediated gene knockdown was used to explore the role of this small HSP in chondrocyte biology, by transfecting low concentrations of small interfering RNA (siRNA) in cultured chondrocytes. Results We initially identified ,B-crystallin as a small HSP that was differentially expressed between healthy and OA-affected chondrocytes. The decreased abundance of this protein in OA chondrocytes was confirmed by Western blotting. Moreover, real-time RT-PCR confirmed the differential expression between chondrocytes isolated from visibly intact and visibly damaged zones of OA cartilage. The proinflammatory cytokines interleukin-1, and tumor necrosis factor , both down-regulated ,B-crystallin expression. Transfection of low concentrations of siRNA in cultured chondrocytes resulted in efficient knockdown of ,B-crystallin gene expression. This was accompanied by altered expression of the chondrocyte-specific bone morphogenetic protein 2, aggrecan, and type II collagen genes. Conclusion The present findings identify the small HSP ,B-crystallin as a novel mediator of chondrocyte matrix gene expression that may contribute to altered chondrocyte metabolism during the development of OA. [source]