CHO Cell Culture (cho + cell_culture)

Distribution by Scientific Domains


Selected Abstracts


Mechanism of antibody reduction in cell culture production processes

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2010
Yung-Hsiang Kao
Abstract We recently observed a significant disulfide reduction problem during the scale-up of a manufacturing process for a therapeutic antibody using a CHO expression system. Under certain conditions, extensive reduction of inter-chain disulfide bonds of an antibody produced by CHO cell culture may occur during the harvest operations and/or the protein A chromatography step, resulting in the observation of antibody fragments (light chain, heavy chain, and various combination of both) in the protein A pools. Although all conditions leading to disulfide reduction have not been completely identified, an excessive amount of mechanical cell lysis generated at the harvest step appears to be an important requirement for antibody reduction (Trexler-Schmidt et al., 2010). We have been able to determine the mechanism by which the antibody is reduced despite the fact that not all requirements for antibody reduction were identified. Here we present data strongly suggesting that the antibody reduction was caused by a thioredoxin system or other reducing enzymes with thioredoxin-like activity. The intracellular reducing enzymes and their substrates/cofactors apparently were released into the harvest cell culture fluid (HCCF) when cells were exposed to mechanical cell shear during harvest operations. Surprisingly, the reducing activity in the HCCF can last for a long period of time, causing the reduction of inter-chain disulfide bonds in an antibody. Our findings provide a basis for designing methods to prevent the antibody reduction during the manufacturing process. Biotechnol. Bioeng. 2010;107:622,632. © 2010 Wiley Periodicals, Inc. [source]


Optimization of fed-batch parameters and harvest time of CHO cell cultures for a glycosylated product with multiple mechanisms of inactivation

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2007
Ryan S. Senger
Abstract Optimization of fed-batch feeding parameters was explored for a system with multiple mechanisms of product inactivation. In particular, two separate mechanisms of inactivation were identified for the recombinant tissue-type activator (r-tPA) protein. Dynamic inactivation models were written to describe particular r-tPA glycoform inactivation in the presence and absence of free-glucose. A glucose-independent inactivation mechanism was identified, and inactivation rate constants were found dependent upon the presence of glycosylation of r-tPA at N184. Inactivation rate constants of the glucose-dependent mechanism were not affected by glycosylation at N184. Fed-batch optimization was performed for r-tPA production by CHO cell culture in a stirred-tank reactor with glucose, glutamine and asparagine feed. Feeding profiles in which culture supernatant concentrations of free-glucose and amino acids (combined glutamine and asparagine) were used as control variables, were evaluated for a wide variety of set points. Simulation results for a controlled feeding strategy yielded an optimum at set points of 1.51 g L,1 glucose and 1.18 g L,1 of amino acids. Optimization was also performed in absence of metabolite control using fixed feed-flow rates initiate during the exponential growth phase. Fixed feed-flow results displayed a family of optimum solutions along a mass flow rate ratio of 3.15 of glucose to amino acids. Comparison of the two feeding strategies showed a slight advantage of rapid feeding at a fixed flow rate as opposed to metabolite control for a product with multiple mechanisms of inactivation. Biotechnol. Bioeng. 2007;98: 378,390. © 2007 Wiley Periodicals, Inc. [source]


Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Zizhuo Xing
Abstract Markov chain Monte Carlo (MCMC) method was applied to model kinetics of a fed-batch Chinese hamster ovary cell culture process in 5,000-L bioreactors. The kinetic model consists of six differential equations, which describe dynamics of viable cell density and concentrations of glucose, glutamine, ammonia, lactate, and the antibody fusion protein B1 (B1). The kinetic model has 18 parameters, six of which were calculated from the cell culture data, whereas the other 12 were estimated from a training data set that comprised of seven cell culture runs using a MCMC method. The model was confirmed in two validation data sets that represented a perturbation of the cell culture condition. The agreement between the predicted and measured values of both validation data sets may indicate high reliability of the model estimates. The kinetic model uniquely incorporated the ammonia removal and the exponential function of B1 protein concentration. The model indicated that ammonia and lactate play critical roles in cell growth and that low concentrations of glucose (0.17 mM) and glutamine (0.09 mM) in the cell culture medium may help reduce ammonia and lactate production. The model demonstrated that 83% of the glucose consumed was used for cell maintenance during the late phase of the cell cultures, whereas the maintenance coefficient for glutamine was negligible. Finally, the kinetic model suggests that it is critical for B1 production to sustain a high number of viable cells. The MCMC methodology may be a useful tool for modeling kinetics of a fed-batch mammalian cell culture process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Enhanced interferon-, production by CHO cells through elevated osmolality and reduced culture temperature

BIOTECHNOLOGY PROGRESS, Issue 5 2009
Young Kue Han
Abstract For efficient production of native interferon-, (IFN-,) in recombinant CHO cell culture, the IFN-, molecular aggregation that occurs during culture needs to be minimized. To do so, we investigated the effect of hyperosmolality and hypothermia on IFN-, production and molecular aggregation in rCHO cell culture. Both hyperosmolality (470 mOsm/kg) and hypothermia (32°C) increased specific native INF-, productivity qIFN-,. Furthermore, they decreased the IFN-, molecular aggregation, although severe IFN-, molecular aggregation could not be avoided in the later phase of culture. To overcome growth suppression at hyperosmolality and hypothermia, cells were cultivated in a biphasic mode. Cells were first cultivated at 310 mOsm/kg and 37°C for 2 days to rapidly obtain a reasonably high cell concentration. The temperature and osmolality were then shifted to 32°C and 470 mOsm/kg, respectively, to achieve high qIFN-, and reduced IFN-, molecular aggregation. Due to the enhanced qIFN-, and delayed molecular aggregation, the highest native IFN-, concentration achieved on day 6 was 18.03 ± 0.61 mg/L, which was 5.30,fold higher than that in a control batch culture (310 mOsm/kg and 37°C). Taken together, a combination of hyperosmolality and hypothermia in a biphasic culture is a useful strategy for improved native IFN-, production from rCHO cells. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Cell Separator Operation within Temperature Ranges To Minimize Effects on Chinese Hamster Ovary Cell Perfusion Culture

BIOTECHNOLOGY PROGRESS, Issue 6 2007
Hans Drouin
A cell retention device that provides reliable high-separation efficiency with minimal negative effects on the cell culture is essential for robust perfusion culture processes. External separation devices generally expose cells to periodic variations in temperature, most commonly temperatures below 37 °C, while the cells are outside the bioreactor. To examine this phenomenon, aliquots of ,5% of a CHO cell culture were exposed to 60 s cyclic variations of temperature simulating an acoustic separator environment. It was found that, for average exposure temperatures between 31.5 and 38.5 °C, there were no significant impacts on the rates of growth, glucose consumption, or t-PA production, defining an acceptable range of operating temperatures. These results were subsequently confirmed in perfusion culture experiments for average exposure temperatures between 31.6 and 38.1 °C. A 25,1 central composite factorial design experiment was then performed to systematically evaluate the effects of different operating variables on the inlet and outlet temperatures of a 10L acoustic separator. The power input, ambient temperature, as well as the perfusion and recycle flow rates significantly influenced the temperature, while the cell concentration did not. An empirical model was developed that predicted the temperature changes between the inlet and the outlet of the acoustic separator within ±0.5 °C. A series of perfusion experiments determined the ranges of the significant operational settings that maintained the acoustic separator inlet and outlet temperatures within the acceptable range. For example, these objectives were always met by using the manufacturer-recommended operational settings as long as the recirculation flow rate was maintained above 15 L day,1 and the ambient temperature was near 22 °C. [source]


Optimization of fed-batch parameters and harvest time of CHO cell cultures for a glycosylated product with multiple mechanisms of inactivation

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2007
Ryan S. Senger
Abstract Optimization of fed-batch feeding parameters was explored for a system with multiple mechanisms of product inactivation. In particular, two separate mechanisms of inactivation were identified for the recombinant tissue-type activator (r-tPA) protein. Dynamic inactivation models were written to describe particular r-tPA glycoform inactivation in the presence and absence of free-glucose. A glucose-independent inactivation mechanism was identified, and inactivation rate constants were found dependent upon the presence of glycosylation of r-tPA at N184. Inactivation rate constants of the glucose-dependent mechanism were not affected by glycosylation at N184. Fed-batch optimization was performed for r-tPA production by CHO cell culture in a stirred-tank reactor with glucose, glutamine and asparagine feed. Feeding profiles in which culture supernatant concentrations of free-glucose and amino acids (combined glutamine and asparagine) were used as control variables, were evaluated for a wide variety of set points. Simulation results for a controlled feeding strategy yielded an optimum at set points of 1.51 g L,1 glucose and 1.18 g L,1 of amino acids. Optimization was also performed in absence of metabolite control using fixed feed-flow rates initiate during the exponential growth phase. Fixed feed-flow results displayed a family of optimum solutions along a mass flow rate ratio of 3.15 of glucose to amino acids. Comparison of the two feeding strategies showed a slight advantage of rapid feeding at a fixed flow rate as opposed to metabolite control for a product with multiple mechanisms of inactivation. Biotechnol. Bioeng. 2007;98: 378,390. © 2007 Wiley Periodicals, Inc. [source]


Feed development for fed-batch CHO production process by semisteady state analysis

BIOTECHNOLOGY PROGRESS, Issue 3 2010
Sarwat F. Khattak
Abstract Semisteady state cultures are useful for studying cell physiology and facilitating media development. Two semisteady states with a viable cell density of 5.5 million cells/mL were obtained in CHO cell cultures and compared with a fed-batch mode control. In the first semisteady state, the culture was maintained at 5 mM glucose and 0.5 mM glutamine. The second condition had threefold higher concentrations of both nutrients, which led to a 10% increase in lactate production, a 78% increase in ammonia production, and a 30% reduction in cell growth rate. The differences between the two semisteady states indicate that maintaining relatively low levels of glucose and glutamine can reduce the production of lactate and ammonia. Specific amino acid production and consumption indicated further metabolic differences between the two semisteady states and fed-batch mode. The results from this experiment shed light in the feeding strategy for a fed-batch process and feed medium enhancement. The fed-batch process utilizes a feeding strategy whereby the feed added was based on glucose levels in the bioreactor. To evaluate if a fixed feed strategy would improve robustness and process consistency, two alternative feeding strategies were implemented. A constant volume feed of 30% or 40% of the initial culture volume fed over the course of cell culture was evaluated. The results indicate that a constant volumetric-based feed can be more beneficial than a glucose-based feeding strategy. This study demonstrated the applicability of analyzing CHO cultures in semisteady state for feed enhancement and continuous process improvement. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]