CH4 Fluxes (ch4 + flux)

Distribution by Scientific Domains


Selected Abstracts


Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2008
Minita Shrestha
Summary Methanotrophs in the rhizosphere of rice field ecosystems attenuate the emissions of CH4 into the atmosphere and thus play an important role for the global cycle of this greenhouse gas. Therefore, we measured the activity and composition of the methanotrophic community in the rhizosphere of rice microcosms. Methane oxidation was determined by measuring the CH4 flux in the presence and absence of difluoromethane as a specific inhibitor for methane oxidation. Methane oxidation started on day 24 and reached the maximum on day 32 after transplantation. The total methanotrophic community was analysed by terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. The metabolically active methanotrophic community was analysed by stable isotope probing of microbial phospholipid fatty acids (PLFA-SIP) using 13C-labelled CH4 directly added to the rhizospheric region. Rhizospheric soil and root samples were collected after exposure to 13CH4 for 8 and 18 days. Both T-RFLP/cloning and PLFA-SIP approaches showed that type I and type II methanotrophic populations changed over time with respect to activity and population size in the rhizospheric soil and on the rice roots. However, type I methanotrophs were more active than type II methanotrophs at both time points indicating they were of particular importance in the rhizosphere. PLFA-SIP showed that the active methanotrophic populations exhibit a pronounced spatial and temporal variation in rice microcosms. [source]


Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2010
Thomas E. Freitag
Abstract The relationship between biogeochemical process rates and microbial functional activity was investigated by analysis of the transcriptional dynamics of the key functional genes for methanogenesis (methyl coenzyme M reductase; mcrA) and methane oxidation (particulate methane monooxygenase; pmoA) and in situ methane flux at two peat soil field sites with contrasting net methane-emitting and -oxidizing characteristics. qPCR was used to quantify the abundances of mcrA and pmoA genes and transcripts at two soil depths. Total methanogen and methanotroph transcriptional dynamics, calculated from mcrA and pmoA gene : transcript abundance ratios, were similar at both sites and depths. However, a linear relationship was demonstrated between surface mcrA and pmoA transcript dynamics and surface flux rates at the methane-emitting and methane-oxidizing sites, respectively. Results indicate that methanotroph activity was at least partially substrate-limited at the methane-emitting site and by other factors at the methane-oxidizing site. Soil depth also contributed to the control of surface methane fluxes, but to a lesser extent. Small differences in the soil water content may have contributed to differences in methanogen and methanotroph activities. This study therefore provides a first insight into the regulation of in situ, field-level surface CH4 flux at the molecular level by an accurate reflection of gene : transcript abundance ratios for the key genes in methane generation and consumption. [source]


Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance

GLOBAL CHANGE BIOLOGY, Issue 9 2010
KEVIN D. LONG
Abstract Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May,September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181,215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m,2 s,1 (4.6 mg CH4 m,2 h,1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144,269 (late May,late September)], the total CH4 emission was 3.2 g CH4 m,2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m,2 or 217 g C m,2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years. [source]


Options for mitigating methane emission from a permanently flooded rice field

GLOBAL CHANGE BIOLOGY, Issue 1 2003
Zucong Cai
Abstract Permanently flooded rice fields, widely distributed in south and south-west China, emit more CH4 than those drained in the winter crop season. For understanding CH4 emissions from permanently flooded rice fields and developing mitigation options, CH4 emission was measured year-round for 6 years from 1995 to 2000, in a permanently flooded rice field in Chongqing, China, where two cultivations with four treatments were prepared as follows: plain-cultivation, summer rice crop and winter fallow with floodwater layer annually (convention, Ch-FF), and winter upland crop under drained conditions (Ch-Wheat); ridge-cultivation without tillage, summer rice and winter fallow with floodwater layer annually (Ch-FFR), and winter upland crop under drained conditions (Ch-RW), respectively. On a 6-year average, compared to the treatments with floodwater in the winter crop season, the CH4 flux during rice-growing period from the treatments draining floodwater and planting winter crop was reduced by 42% in plain-cultivation and by 13% in ridge-cultivation (P < 0.05), respectively. The reduction of annual CH4 emission reached 68 and 48%, respectively. Compared to plain-cultivation (Ch-FF), ridge-cultivation (Ch-FFR) reduced annual CH4 emission by 33%, and which was mainly occurred in the winter crop season. These results indicate that draining floodwater layer for winter upland crop growth was not only able to prevent CH4 emission from permanently flooded paddy soils directly in the winter crop season, but also to reduce CH4 emission substantially during the following rice-growing period. As an alternative to the completely drainage of floodwater layer in the winter crop season, ridge-cultivation could also significantly mitigate CH4 emissions from permanently flooded rice fields. [source]


Aboveground plant biomass, carbon, and nitrogen dynamics before and after burning in a seminatural grassland of Miscanthus sinensis in Kumamoto, Japan

GCB BIOENERGY, Issue 2 2010
YO TOMA
Abstract Although fire has been used for several thousand years to maintain Miscanthus sinensis grasslands in Japan, there is little information about the nutrient dynamics in these ecosystems immediately after burning. We investigated the loss of aboveground biomass; carbon (C) and nitrogen (N) dynamics; surface soil C change before and after burning; and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes 2 h after burning in a M. sinensis grassland in Kumamoto, Japan. We calculated average C and N accumulation rates within the soil profile over the past 7300 years, which were 58.0 kg C ha,1 yr,1 and 2.60 kg N ha,1 yr,1, respectively. After burning, 98% of aboveground biomass and litter were consumed. Carbon remaining on the field, however, was 102 kg C ha,1. We found at least 43% of C was possibly lost due to decomposition. However, remaining C, which contained ash and charcoal, appeared to contribute to C accumulation in soil. There was no difference in the amount of 0,5 cm surface soil C before and after burning. The amount of remaining litter on the soil surface indicated burning appeared not to have caused a reduction in soil C nor did it negatively impact the sub-surface vegetative crown of M. sinensis. Also, nearly 50 kg N ha,1 of total aboveground biomass and litter N was lost due to burning. Compared with before the burning event, postburning CO2 and CH4 fluxes from soil appeared not to be directly affected by burning. However, it appears the short time span of measurements of N2O flux after burning sufficiently characterized the pattern of increasing N2O fluxes immediately after burning. These findings indicate burning did not cause significant reductions in soil C nor did it result in elevated CO2 and CH4 emissions from the soil relative to before the burning event. [source]


Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

GLOBAL CHANGE BIOLOGY, Issue 9 2010
M. P. WALDROP
Abstract The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at ,5 and 5 °C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. [source]


The European carbon balance.

GLOBAL CHANGE BIOLOGY, Issue 5 2010
Part 2: croplands
Abstract We estimated the long-term carbon balance [net biome production (NBP)] of European (EU-25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m,2 yr,1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU-25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m,2 yr,1. In addition, three process-based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m,2 yr,1 or a small source of 7.6 g C m,2 yr,1. Neither the soil C inventory data, nor the process model results support the previous European-scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m,2 yr,1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ,8.3 ± 13 and ,13 ± 33 g C m,2 yr,1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m,2 yr,1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m,2 yr,1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42,47 g C Eq m,2 yr,1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate. [source]


Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China

GLOBAL CHANGE BIOLOGY, Issue 3 2006
XULI TANG
Abstract The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean±SD) were 7.7±4.6 Mg CO2 -C ha,1 yr,1, 3.2±1.2 kg N2O-N ha,1 yr,1, and 3.4±0.9 kg CH4 -C ha,1 yr,1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17,44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. [source]


Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest

GLOBAL CHANGE BIOLOGY, Issue 9 2003
Cindy Werner
The biosphere,atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997,1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447-m WLEF-TV tower as part of the Chequamegon Ecosystem,Atmosphere Study (ChEAS). No systematic diurnal variability was observed in regional CH4 fluxes measured using the MBR method. In all 3 years, regional CH4 emissions reached maximum values during June,August (24±14.4 mg m,2 day,1), coinciding with periods of maximum soil temperatures. In 1997 and 1998, the onset in CH4 emission was coincident with increases in ground temperatures following the melting of the snow cover. The onset of emission in 1999 lagged 100 days behind the 1997 and 1998 onsets, and was likely related to postdrought recovery of the regional water table to typical levels. The net regional emissions were 3.0, 3.1, and 2.1 g CH4 m,2 for 1997, 1998, and 1999, respectively. Annual emissions for wetland regions within the source area (28% of the land area) were 13.2, 13.8, and 10.3 g CH4 m,2 assuming moderate rates of oxidation of CH4 in upland regions in 1997, 1998, and 1999, respectively. Scaling these measurements to the Chequamegon Ecosystem (CNNF) and comparing with average wetland emissions between 40°N and 50°N suggests that wetlands in the CNNF emit approximately 40% less than average wetlands at this latitude. Differences in mean monthly air temperatures did not affect the magnitude of CH4 emissions; however, reduced precipitation and water table levels suppressed CH4 emission during 1999, suggesting that long-term climatic changes that reduce the water table will likely transform this landscape to a reduced source or possibly a sink for atmospheric CH4. [source]