| |||
CH4 Emission (ch4 + emission)
Selected AbstractsA review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emissionECOLOGY LETTERS, Issue 10 2009Lingli Liu Abstract Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO2, CH4 and N2O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO2 exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH4 emission by 97%, reduced CH4 uptake by 38% and increased N2O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO2 reduction could be largely offset (53,76%) by N stimulation of global CH4 and N2O emission from multiple ecosystems. [source] Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covarianceGLOBAL CHANGE BIOLOGY, Issue 9 2010KEVIN D. LONG Abstract Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May,September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181,215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m,2 s,1 (4.6 mg CH4 m,2 h,1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144,269 (late May,late September)], the total CH4 emission was 3.2 g CH4 m,2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m,2 or 217 g C m,2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years. [source] Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fieldsGLOBAL CHANGE BIOLOGY, Issue 9 2006XUNHUA ZHENG Abstract Using the free-air CO2 enrichment (FACE) techniques, we carried out a 3-year mono-factorial experiment in temperate paddy rice fields of Japan (1998,2000) and a 3-year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001,2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol,1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen-poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen-rich paddy rice ecosystems. [source] Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forestGLOBAL CHANGE BIOLOGY, Issue 9 2003Cindy Werner The biosphere,atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997,1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447-m WLEF-TV tower as part of the Chequamegon Ecosystem,Atmosphere Study (ChEAS). No systematic diurnal variability was observed in regional CH4 fluxes measured using the MBR method. In all 3 years, regional CH4 emissions reached maximum values during June,August (24±14.4 mg m,2 day,1), coinciding with periods of maximum soil temperatures. In 1997 and 1998, the onset in CH4 emission was coincident with increases in ground temperatures following the melting of the snow cover. The onset of emission in 1999 lagged 100 days behind the 1997 and 1998 onsets, and was likely related to postdrought recovery of the regional water table to typical levels. The net regional emissions were 3.0, 3.1, and 2.1 g CH4 m,2 for 1997, 1998, and 1999, respectively. Annual emissions for wetland regions within the source area (28% of the land area) were 13.2, 13.8, and 10.3 g CH4 m,2 assuming moderate rates of oxidation of CH4 in upland regions in 1997, 1998, and 1999, respectively. Scaling these measurements to the Chequamegon Ecosystem (CNNF) and comparing with average wetland emissions between 40°N and 50°N suggests that wetlands in the CNNF emit approximately 40% less than average wetlands at this latitude. Differences in mean monthly air temperatures did not affect the magnitude of CH4 emissions; however, reduced precipitation and water table levels suppressed CH4 emission during 1999, suggesting that long-term climatic changes that reduce the water table will likely transform this landscape to a reduced source or possibly a sink for atmospheric CH4. [source] Options for mitigating methane emission from a permanently flooded rice fieldGLOBAL CHANGE BIOLOGY, Issue 1 2003Zucong Cai Abstract Permanently flooded rice fields, widely distributed in south and south-west China, emit more CH4 than those drained in the winter crop season. For understanding CH4 emissions from permanently flooded rice fields and developing mitigation options, CH4 emission was measured year-round for 6 years from 1995 to 2000, in a permanently flooded rice field in Chongqing, China, where two cultivations with four treatments were prepared as follows: plain-cultivation, summer rice crop and winter fallow with floodwater layer annually (convention, Ch-FF), and winter upland crop under drained conditions (Ch-Wheat); ridge-cultivation without tillage, summer rice and winter fallow with floodwater layer annually (Ch-FFR), and winter upland crop under drained conditions (Ch-RW), respectively. On a 6-year average, compared to the treatments with floodwater in the winter crop season, the CH4 flux during rice-growing period from the treatments draining floodwater and planting winter crop was reduced by 42% in plain-cultivation and by 13% in ridge-cultivation (P < 0.05), respectively. The reduction of annual CH4 emission reached 68 and 48%, respectively. Compared to plain-cultivation (Ch-FF), ridge-cultivation (Ch-FFR) reduced annual CH4 emission by 33%, and which was mainly occurred in the winter crop season. These results indicate that draining floodwater layer for winter upland crop growth was not only able to prevent CH4 emission from permanently flooded paddy soils directly in the winter crop season, but also to reduce CH4 emission substantially during the following rice-growing period. As an alternative to the completely drainage of floodwater layer in the winter crop season, ridge-cultivation could also significantly mitigate CH4 emissions from permanently flooded rice fields. [source] Aboveground plant biomass, carbon, and nitrogen dynamics before and after burning in a seminatural grassland of Miscanthus sinensis in Kumamoto, JapanGCB BIOENERGY, Issue 2 2010YO TOMA Abstract Although fire has been used for several thousand years to maintain Miscanthus sinensis grasslands in Japan, there is little information about the nutrient dynamics in these ecosystems immediately after burning. We investigated the loss of aboveground biomass; carbon (C) and nitrogen (N) dynamics; surface soil C change before and after burning; and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes 2 h after burning in a M. sinensis grassland in Kumamoto, Japan. We calculated average C and N accumulation rates within the soil profile over the past 7300 years, which were 58.0 kg C ha,1 yr,1 and 2.60 kg N ha,1 yr,1, respectively. After burning, 98% of aboveground biomass and litter were consumed. Carbon remaining on the field, however, was 102 kg C ha,1. We found at least 43% of C was possibly lost due to decomposition. However, remaining C, which contained ash and charcoal, appeared to contribute to C accumulation in soil. There was no difference in the amount of 0,5 cm surface soil C before and after burning. The amount of remaining litter on the soil surface indicated burning appeared not to have caused a reduction in soil C nor did it negatively impact the sub-surface vegetative crown of M. sinensis. Also, nearly 50 kg N ha,1 of total aboveground biomass and litter N was lost due to burning. Compared with before the burning event, postburning CO2 and CH4 fluxes from soil appeared not to be directly affected by burning. However, it appears the short time span of measurements of N2O flux after burning sufficiently characterized the pattern of increasing N2O fluxes immediately after burning. These findings indicate burning did not cause significant reductions in soil C nor did it result in elevated CO2 and CH4 emissions from the soil relative to before the burning event. [source] Soil,atmosphere exchange of CH4, CO, N2O and NOx and the effects of land-use change in the semiarid Mallee system in Southeastern AustraliaGLOBAL CHANGE BIOLOGY, Issue 9 2010IAN GALBALLY Abstract The semiarid and arid zones cover a quarter of the global land area and support one-fifth of the world's human population. A significant fraction of the global soil,atmosphere exchange for climatically active gases occurs in semiarid and arid zones yet little is known about these exchanges. A study was made of the soil,atmosphere exchange of CH4, CO, N2O and NOx in the semiarid Mallee system, in north-western Victoria, Australia, at two sites: one pristine mallee and the other cleared for approximately 65 years for farming (currently wheat). The mean (± standard error) rates of CH4 exchange were uptakes of ,3.0 ± 0.5 ng(C) m,2 s,1 for the Mallee and ,6.0 ± 0.3 ng(C) m,2 s,1 for the Wheat. Converting mallee forest to wheat crop increases CH4 uptake significantly. CH4 emissions were observed in the Mallee in summer and were hypothesized to arise from termite activity. We find no evidence that in situ growing wheat plants emit CH4, contrary to a recent report. The average CO emissions of 10.1 ± 1.8 ng(C) m,2 s,1 in the Mallee and 12.6 ± 2.0 ng(C) m,2 s,1 in the Wheat. The average N2O emissions were 0.5 ± 0.1 ng(N) m,2 s,1 from the pristine Mallee and 1.4 ± 0.3 ng(N) m,2 s,1 from the Wheat. The experimental results show that the processes controlling these exchanges are different to those in temperate systems and are poorly understood. [source] Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fieldsGLOBAL CHANGE BIOLOGY, Issue 9 2006XUNHUA ZHENG Abstract Using the free-air CO2 enrichment (FACE) techniques, we carried out a 3-year mono-factorial experiment in temperate paddy rice fields of Japan (1998,2000) and a 3-year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001,2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol,1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen-poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen-rich paddy rice ecosystems. [source] Pristine New Zealand forest soil is a strong methane sinkGLOBAL CHANGE BIOLOGY, Issue 1 2004Sally J. Price Abstract Methanotrophic bacteria oxidize methane (CH4) in forest soils that cover ,30% of Earth's land surface. The first measurements for a pristine Southern Hemisphere forest are reported here. Soil CH4 oxidation rate averaged 10.5±0.6 kg CH4 ha,1 yr,1, with the greatest rates in dry warm soil (up to 17 kg CH4 ha,1 yr,1). Methanotrophic activity was concentrated beneath the organic horizon at 50,100 mm depth. Water content was the principal regulator of (r2=0.88) from the most common value of field capacity to less than half of this when the soil was driest. Multiple linear regression analysis showed that soil temperature was not very influential. However, inverse co-variability confounded the separation of soil water and temperature effects in situ. Fick's law explained the role of water content in regulating gas diffusion and substrate supply to the methanotrophs and the importance of pore size distribution and tortuosity. This analysis also showed that the chambers used in the study did not affect the oxidation rate measurements. The soil was always a net sink for atmospheric CH4 and no net CH4 (or nitrous oxide, N2O) emissions were measured over the 17-month long study. For New Zealand, national-scale extrapolation of our data suggested the potential to offset 13% of CH4 emissions from ca. 90 M ruminant animals. Our average was about 6.5 times higher than rates reported for most Northern Hemisphere forest soils. This very high was attributed to the lack of anthropogenic disturbance for at least 3000,5000 years and the low rate of atmospheric nitrogen deposition. Our truly baseline data could represent a valid preagricultural, preindustrial estimate of the soil sink for temperate latitudes. [source] Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forestGLOBAL CHANGE BIOLOGY, Issue 9 2003Cindy Werner The biosphere,atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997,1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447-m WLEF-TV tower as part of the Chequamegon Ecosystem,Atmosphere Study (ChEAS). No systematic diurnal variability was observed in regional CH4 fluxes measured using the MBR method. In all 3 years, regional CH4 emissions reached maximum values during June,August (24±14.4 mg m,2 day,1), coinciding with periods of maximum soil temperatures. In 1997 and 1998, the onset in CH4 emission was coincident with increases in ground temperatures following the melting of the snow cover. The onset of emission in 1999 lagged 100 days behind the 1997 and 1998 onsets, and was likely related to postdrought recovery of the regional water table to typical levels. The net regional emissions were 3.0, 3.1, and 2.1 g CH4 m,2 for 1997, 1998, and 1999, respectively. Annual emissions for wetland regions within the source area (28% of the land area) were 13.2, 13.8, and 10.3 g CH4 m,2 assuming moderate rates of oxidation of CH4 in upland regions in 1997, 1998, and 1999, respectively. Scaling these measurements to the Chequamegon Ecosystem (CNNF) and comparing with average wetland emissions between 40°N and 50°N suggests that wetlands in the CNNF emit approximately 40% less than average wetlands at this latitude. Differences in mean monthly air temperatures did not affect the magnitude of CH4 emissions; however, reduced precipitation and water table levels suppressed CH4 emission during 1999, suggesting that long-term climatic changes that reduce the water table will likely transform this landscape to a reduced source or possibly a sink for atmospheric CH4. [source] Options for mitigating methane emission from a permanently flooded rice fieldGLOBAL CHANGE BIOLOGY, Issue 1 2003Zucong Cai Abstract Permanently flooded rice fields, widely distributed in south and south-west China, emit more CH4 than those drained in the winter crop season. For understanding CH4 emissions from permanently flooded rice fields and developing mitigation options, CH4 emission was measured year-round for 6 years from 1995 to 2000, in a permanently flooded rice field in Chongqing, China, where two cultivations with four treatments were prepared as follows: plain-cultivation, summer rice crop and winter fallow with floodwater layer annually (convention, Ch-FF), and winter upland crop under drained conditions (Ch-Wheat); ridge-cultivation without tillage, summer rice and winter fallow with floodwater layer annually (Ch-FFR), and winter upland crop under drained conditions (Ch-RW), respectively. On a 6-year average, compared to the treatments with floodwater in the winter crop season, the CH4 flux during rice-growing period from the treatments draining floodwater and planting winter crop was reduced by 42% in plain-cultivation and by 13% in ridge-cultivation (P < 0.05), respectively. The reduction of annual CH4 emission reached 68 and 48%, respectively. Compared to plain-cultivation (Ch-FF), ridge-cultivation (Ch-FFR) reduced annual CH4 emission by 33%, and which was mainly occurred in the winter crop season. These results indicate that draining floodwater layer for winter upland crop growth was not only able to prevent CH4 emission from permanently flooded paddy soils directly in the winter crop season, but also to reduce CH4 emission substantially during the following rice-growing period. As an alternative to the completely drainage of floodwater layer in the winter crop season, ridge-cultivation could also significantly mitigate CH4 emissions from permanently flooded rice fields. [source] Factors affecting methane production and mitigation in ruminantsANIMAL SCIENCE JOURNAL, Issue 1 2010Masaki SHIBATA ABSTRACT Methane (CH4) is the second most important greenhouse gas (GHG) and that emitted from enteric fermentation in livestock is the single largest source of emissions in Japan. Many factors influence ruminant CH4 production, including level of intake, type and quality of feeds and environmental temperature. The objectives of this review are to identify the factors affecting CH4 production in ruminants, to examine technologies for the mitigation of CH4 emissions from ruminants, and to identify areas requiring further research. The following equation for CH4 prediction was formulated using only dry matter intake (DMI) and has been adopted in Japan to estimate emissions from ruminant livestock for the National GHG Inventory Report: Y = ,17.766 + 42.793X , 0.849X2, where Y is CH4 production (L/day) and X is DMI (kg/day). Technologies for the mitigation of CH4 emissions from ruminants include increasing productivity by improving nutritional management, the manipulation of ruminal fermentation by changing feed composition, the addition of CH4 inhibitors, and defaunation. Considering the importance of ruminant livestock, it is essential to establish economically feasible ways of reducing ruminant CH4 production while improving productivity; it is therefore critical to conduct a full system analysis to select the best combination of approaches or new technologies to be applied under long-term field conditions. [source] |