Certain Scenarios (certain + scenario)

Distribution by Scientific Domains


Selected Abstracts


PERSPECTIVE: MODELS OF SPECIATION: WHAT HAVE WE LEARNED IN 40 YEARS?

EVOLUTION, Issue 10 2003
Sergey Gavrilets
Abstract Theoretical studies of speciation have been dominated by numerical simulations aiming to demonstrate that speciation in a certain scenario may occur. What is needed now is a shift in focus to identifying more general rules and patterns in the dynamics of speciation. The crucial step in achieving this goal is the development of simple and general dynamical models that can be studied not only numerically but analytically as well. I review some of the existing analytical results on speciation. I first show why the classical theories of speciation by peak shifts across adaptive valleys driven by random genetic drift run into trouble (and into what kind of trouble). Then I describe the Bateson-Dobzhansky-Muller (BDM) model of speciation that does not require overcoming selection. I describe exactly how the probability of speciation, the average waiting time to speciation, and the average duration of speciation depend on the mutation and migration rates, population size, and selection for local adaptation. The BDM model postulates a rather specific genetic architecture of reproductive isolation. I then show exactly why the genetic architecture required by the BDM model should be common in general. Next I consider the multilocus generalizations of the BDM model again concentrating on the qualitative characteristics of speciation such as the average waiting time to speciation and the average duration of speciation. Finally, I consider two models of sympatric speciation in which the conditions for sympatric speciation were found analytically. A number of important conclusions have emerged from analytical studies. Unless the population size is small and the adaptive valley is shallow, the waiting time to a stochastic transition between the adaptive peaks is extremely long. However, if transition does happen, it is very quick. Speciation can occur by mutation and random drift alone with no contribution from selection as different populations accumulate incompatible genes. The importance of mutations and drift in speciation is augmented by the general structure of adaptive landscapes. Speciation can be understood as the divergence along nearly neutral networks and holey adaptive landscapes (driven by mutation, drift, and selection for adaptation to a local biotic and/or abiotic environment) accompanied by the accumulation of reproductive isolation as a by-product. The waiting time to speciation driven by mutation and drift is typically very long. Selection for local adaptation (either acting directly on the loci underlying reproductive isolation via their pleiotropic effects or acting indirectly via establishing a genetic barrier to gene flow) can significantly decrease the waiting time to speciation. In the parapatric case the average actual duration of speciation is much shorter than the average waiting time to speciation. Speciation is expected to be triggered by changes in the environment. Once genetic changes underlying speciation start, they go to completion very rapidly. Sympatric speciation is possible if disruptive selection and/or assortativeness in mating are strong enough. Sympatric speciation is promoted if costs of being choosy are small (or absent) and if linkage between the loci experiencing disruptive selection and those controlling assortative mating is strong. [source]


Inbreeding Effects on Hatchery and Growout Performance of Pacific White Shrimp, Penaeus (Litopenaeus) vannamei

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2008
Dustin R Moss
In animal breeding programs, selection coupled with a narrow genetic base can cause high levels of inbreeding to occur rapidly (in one or two generations). Although the effects of inbreeding have been studied extensively in terrestrial animals and to a lesser extent in aquaculture species, little is known about the effects of inbreeding on penaeid shrimp. The objective of this study was to investigate the effects of inbreeding on hatchery and growout performance of the Pacific white shrimp, Penaeus vannamei. The experiment was conducted over 2 yr, and data from two successive generations (G2 and G3) of inbred (sibling,sibling mating) and outbred families were analyzed. There were 11 inbred and 12 outbred families in G2 and 9 inbred and 10 outbred families in G3. Inbreeding coefficients (F) for outbred and inbred families were 0.00 and 0.25, respectively, for G2 and 0.00 and 0.375, respectively, for G3. Growth rates for outbreds and inbreds were similar in both G2 and G3. Hatch rate for inbred families was 33.1% lower than for outbred families in G2 and 47.1% lower in G3. Inbreeding depression (IBD) (relative change in phenotype per 0.1 increase in F) ± 95% CI for hatch rate was ,12.3 ± 10.1%. Hatchery survival for inbred families was 31.4% lower than for outbred families in G2 and 38.8% lower in G3. IBD for hatchery survival was ,11.0 ± 5.7%. Growout survival was 1.9% lower for inbred families than for outbred families in G2 and 19.6% lower in G3. IBD for growout survival was ,3.8 ± 2.9%. There was also a significant linear relationship between IBD estimates for survival traits and mean outbred survival. At high outbred survival, IBD was low (e.g., growout survival in G2), but IBD appeared to become more severe when outbred survival was lower. This suggests that stress (related to environment and/or life stage) may worsen IBD for survival traits. Results also indicate that moderate to high levels of inbreeding (>10%) should be avoided in commercial shrimp hatcheries because the cumulative effect of IBD on hatch rate and hatchery survival will significantly reduce postlarvae production. Thus, IBD can be significant enough to justify the use of inbreeding as a germplasm protection strategy (under certain scenarios) for genetic improvement programs. [source]


The current role of thoracic surgery in tuberculosis management

RESPIROLOGY, Issue 7 2009
Alan D.L. SIHOE
ABSTRACT Although tuberculosis is mainly managed medically today, thoracic surgery continues to play a key role in its diagnosis and treatment in selected subgroups of patients. In certain scenarios such as multi-drug-resistant tuberculosis, advanced tuberculous empyema and symptomatic bronchial stenosis, modern thoracic surgery may represent the only effective means of management in selected patients. Advances in thoracic surgery in recent years, in particular the use of Video-Assisted Thoracic Surgery, not only reduce postoperative morbidity for individual patients, but may potentially allow a wider range of tuberculosis patients to benefit from surgery. Respiratory physicians and thoracic surgeons should continue to work together to ensure that tuberculosis patients who may benefit from surgery are identified for prompt and effective intervention. [source]


Imaging the future of stroke: I. Ischemia,

ANNALS OF NEUROLOGY, Issue 5 2009
David S. Liebeskind MD
Envisioning the future of stroke appears daunting considering the milestones already achieved in stroke imaging. A historical perspective on the developments in stroke care provides a striking narrative of how imaging has transformed diagnosis, therapy, and prognosis of cerebrovascular disorders. Multimodal imaging techniques such as CT and MRI, incorporating parenchymal depictions, illustration of the vasculature, and perfusion data, can provide a wealth of information regarding ischemic pathophysiology. Key elements of ischemic pathophysiology depicted with imaging include vascular occlusion, compensatory collateral flow, resultant hemodynamic conditions that reflect these sources of blood flow, and the neurovascular injury that ensues. The mantra of "time is brain" has been perpetuated, but this does not provide an entirely accurate reflection of ischemic pathophysiology and imaging insight shows far more than time alone. Maximizing the potential of perfusion imaging will continue to expand the nascent concept that cerebral ischemia may be completely reversible in certain scenarios. Novel modalities provide a fertile ground for discovery of therapeutic targets and the potential to assess effects of promising strategies. Beyond clinical trials, imaging has become a requisite component of the neurological examination enabling tailored stroke therapy with the use of detailed neuroimaging modalities. In this first article on ischemia, the focus is on the most recent imaging advances and exploring aspects of cerebral ischemia where imaging may yield additional therapeutic strategies. A subsequent article will review recent and anticipated imaging advances in hemorrhage. These thematic overviews underscore that imaging will undoubtedly continue to dramatically shape the future of stroke. Ann Neurol 2009;66:574,590 [source]