Centroid Size (centroid + size)

Distribution by Scientific Domains


Selected Abstracts


SPATIOTEMPORAL REORGANIZATION OF GROWTH RATES IN THE EVOLUTION OF ONTOGENY

EVOLUTION, Issue 4 2000
Miriam L. Zelditch
Abstract. Heterochrony, evolutionary changes in rate or timing of development producing parallelism between ontogeny and phylogeny, is viewed as the most common type of evolutionary change in development. Alternative hypotheses such as heterotopy, evolutionary change in the spatial patterning of development, are rarely entertained. We examine the evidence for heterochrony and heterotopy in the evolution of body shape in two clades of piranhas. One of these is the sole case of heterochrony previously reported in the group; the others were previously interpreted as cases of heterotopy. To compare ontogenies of shape, we computed ontogenetic trajectories of shape by multivariate regression of geometric shape variables (i.e., partial warp scores and shape coordinates) on centroid size. Rates of development relative to developmental age and angles between the trajectories were compared statistically. We found a significant difference in developmental rate between species of Serrasalmus, suggesting that heterochrony is a partial explanation for the evolution of body shape, but we also found a significant difference between their ontogenetic transformations; the direction of the difference between them suggests that heterotopy also plays a role in this group. In Pygocentrus we found no difference in developmental rate among species, but we did find a difference in the ontogenies, suggesting that heterotopy, but not heterochrony, is the developmental basis for shape diversification in this group. The prevalence of heterotopy as a source of evolutionary novelty remains largely unexplored and will not become clear until the search for developmental explanations looks beyond heterochrony. [source]


Chondrocranial development in larval Rana sylvatica (Anura: Ranidae): Morphometric analysis of cranial allometry and ontogenetic shape change

JOURNAL OF MORPHOLOGY, Issue 2 2002
Peter M. Larson
Abstract This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed. J. Morphol. 252:131,144, 2002. © 2002 Wiley-Liss, Inc. [source]


Morphological variation in house mice from the Robertsonian polymorphism area of Barcelona

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009
MARIA ASSUMPCIÓ SANS-FUENTES
Morphometric variation in the Robertsonian polymorphism zone of Barcelona of Mus musculus domesticus was studied by geometric morphometrics. This system is characterized by populations of reduced diploid number (2n = 27,39) surrounded by standard populations (2n = 40). We investigated the morphological variation in mice from this area, as well as the effect of geographical distance and karyotype on this variation. We also investigated the degree of co-variation between the two functional units of the mandible to explore the origin of this system (primary intergradation or secondary contact). The size and shape of the cranium, mandible and scapula were analysed for 226 specimens grouped by population, chromosome number and structural heterozygosity. Size was estimated as the centroid size, and shape was estimated after Procrustes superimposition. No significant differences in size between populations or chromosomal groups were detected. Diploid number, structural heterozygosity and local geographical isolation contributed to the differentiation in shape. Morphological differentiation between standard mice and Robertsonian specimens was observed, suggesting genetic isolation between these groups. Co-variation between the ascending ramus and alveolar region of the mandible was quantified by the trace correlation between landmark subsets of these modules. The trace values showed an ascending trend, correlated with the distance from the centre of the polymorphism area, a pattern consistent with a primary intergradation scenario. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 555,570. [source]


Combining geometric morphometrics and pattern recognition to identify interspecific patterns of skull variation: case study in sympatric Argentinian species of the genus Calomys (Rodentia: Cricetidae: Sigmodontinae)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2008
PEDRO CORDEIRO-ESTRELA
Sympatric species of vesper mice Calomys laucha and Calomys musculinus are difficult to discriminate, especially in natural history collections where they are identified by external body measurements and cranial characteristics. Accurate identification of these two species can be important because only one of them, C. musculinus, is a Junin virus reservoir, the aetiological agent of the Argentine Hemorragic Fever. Research has focused into the development of molecular techniques to unambiguously identify these species. We apply statistical procedures from the field of pattern recognition to three-dimensional geometric morphometric data based on skull landmarks to identify sympatric species C. laucha, C. musculinus and Calomys venustus. Pattern recognition techniques correctly identified the three species without any prior information on specimen identity. By contrast to expectations, C. venustus differed from the other two species mainly on the basis of shape and not by its centroid size. The main sources of difference between C. laucha and C. musculinus were of shape, specifically localized at the landmarks defined by: (1) the sutures between the premaxillaries, the nasals and the frontals; (2) the sutures between the parietals, the frontals and the squamosals; and (3) the suture between the parietals and the interparietal. Nevertheless, allometries dominate the patterns of interspecific variation between these latter species and may partly explain past identification difficulties. Morphological evolution is discussed. The need for objective methods to define phenotypic clusters is highlighted with respect to the need for fast and precise biodiversity assessments. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 365,378. [source]


Environmental and ontogenetic constraints on developmental stability in the spatangoid sea urchin Echinocardium (Echinoidea)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2006
THOMAS SAUCEDE
Spatangoid irregular sea urchins are detritivorous benthic organisms particularly prone to variations of environment, and their mode of growth and plate morphology make them an appropriate model to assess the effects of environmental variations. Two populations of Echinocardium flavescens were sampled in two sites of the Norwegian coast characterized by contrasted environmental conditions. Different morphological descriptors (plate areas, interlandmarks distances, overall size, and shape of the posterior ambulacra) were used to appraise interindividual variations, and fluctuating asymmetry. The comparisons were carried out using classical fluctuating asymmetry (FA) methods, as well as Procrustean approaches. The population suspected to be less influenced by anthropic activities exhibits lower levels of FA for the size parameters (plate surfaces, interlandmarks distances, and centroid size) than the population located in a polluted area. Conversely, it shows higher FA values for the shape parameters (landmarks configuration). Interindividual variations appear to be correlated to FA. Variations are orientated according to the main growth axis of the ambulacra, and their intensity is stronger in the large posterior plates, which are also the youngest. These results are discussed with respect to architectural constraints involved in the sea urchin growth. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88, 165,177. [source]


Human cranial anatomy and the differential preservation of population history and climate signatures

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 12 2006
Katerina Harvati
Abstract Cranial morphology is widely used to reconstruct evolutionary relationships, but its reliability in reflecting phylogeny and population history has been questioned. Some cranial regions, particularly the face and neurocranium, are believed to be influenced by the environment and prone to convergence. Others, such as the temporal bone, are thought to reflect more accurately phylogenetic relationships. Direct testing of these hypotheses was not possible until the advent of large genetic data sets. The few relevant studies in human populations have had intriguing but possibly conflicting results, probably partly due to methodological differences and to the small numbers of populations used. Here we use three-dimensional (3D) geometric morphometrics methods to test explicitly the ability of cranial shape, size, and relative position/orientation of cranial regions to track population history and climate. Morphological distances among 13 recent human populations were calculated from four 3D landmark data sets, respectively reflecting facial, neurocranial, and temporal bone shape; shape and relative position; overall cranial shape; and centroid sizes. These distances were compared to neutral genetic and climatic distances among the same, or closely matched, populations. Results indicate that neurocranial and temporal bone shape track neutral genetic distances, while facial shape reflects climate; centroid size shows a weak association with climatic variables; and relative position/orientation of cranial regions does not appear correlated with any of these factors. Because different cranial regions preserve population history and climate signatures differentially, caution is suggested when using cranial anatomy for phylogenetic reconstruction. Anat Rec Part A, 2006. © 2006 Wiley-Liss, Inc. [source]