| |||
Centrifugal Acceleration (centrifugal + acceleration)
Selected AbstractsEFFECT OF CENTRIFUGAL FORCE ON THE AQUEOUS EXTRACTION OF SOLUTE FROM SUGAR BEET TISSUE PRETREATED BY A PULSED ELECTRIC FIELDJOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2005KAMAL EL-BELGHITI ABSTRACT In this article, the centrifugal aqueous extraction of solute from sugar beet tissue is investigated at ambient temperature after a pulsed electric field (PEF) treatment. Two kinds of samples of fresh sugar beet were used: a sample with a determined discoid shape and gratings. Both samples were pretreated by a PEF with 250 rectangular pulses of 100 µS each. The PEF intensity was fixed at 940 V/cm for the disk samples and 670 V/cm for gratings. The pretreated samples were placed in distilled water at ambient temperature with a water-to-solid ratio equal to 3 and subjected to different centrifugal accelerations. The centrifugal field significantly enhanced the kinetics of extraction from the electrically pretreated tissues of sugar beet. However, the increase of centrifugal acceleration was only effective up to a certain value (5430 × g for disk samples and 600 × g for gratings). The centrifugal extraction can be assumed to proceed in two stages: a first rapid washing followed by a slow diffusion stage. A two-exponential kinetics model taking into account these two stages was applied and correctly described the centrifugal extraction from beet samples (disks and gratings). [source] Mass transport and flow regimes in centrifugal partition chromatographyAICHE JOURNAL, Issue 8 2002L. Marchal Centrifugal partition chromatography (CPC) is a support-free liquid,liquid separation process that depends for efficiency on the behavior of the two liquid phases. Hydrodynamics of phases was studied according to flow rate and centrifugal acceleration, using a transparent column and a stroboscopic video system. For the heptane-methanol two-phase system, three main flow regimes,stuck film, oscillating sheet, and atomization,are observed, highlighting the coriolis acceleration effect as well as the influence of the column shape. Mass transport in the CPC column is modeled by a plug flow with axial dispersion and mass transfer with a stagnant volume. Model parameters (residence time, Péclet number, partition ratio, and mass-transfer coefficient) are fitted on solute residence-time distribution. Off-column dispersion is an important source of peak broadening in CPC, whereas its irregular geometry provides a plug flow for mobile phase. Importance of flow pattern on mass transfer is demonstrated. CPC interest for preparative applications is confirmed. [source] EFFECT OF CENTRIFUGAL FORCE ON THE AQUEOUS EXTRACTION OF SOLUTE FROM SUGAR BEET TISSUE PRETREATED BY A PULSED ELECTRIC FIELDJOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2005KAMAL EL-BELGHITI ABSTRACT In this article, the centrifugal aqueous extraction of solute from sugar beet tissue is investigated at ambient temperature after a pulsed electric field (PEF) treatment. Two kinds of samples of fresh sugar beet were used: a sample with a determined discoid shape and gratings. Both samples were pretreated by a PEF with 250 rectangular pulses of 100 µS each. The PEF intensity was fixed at 940 V/cm for the disk samples and 670 V/cm for gratings. The pretreated samples were placed in distilled water at ambient temperature with a water-to-solid ratio equal to 3 and subjected to different centrifugal accelerations. The centrifugal field significantly enhanced the kinetics of extraction from the electrically pretreated tissues of sugar beet. However, the increase of centrifugal acceleration was only effective up to a certain value (5430 × g for disk samples and 600 × g for gratings). The centrifugal extraction can be assumed to proceed in two stages: a first rapid washing followed by a slow diffusion stage. A two-exponential kinetics model taking into account these two stages was applied and correctly described the centrifugal extraction from beet samples (disks and gratings). [source] Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the International Space StationPHYSIOLOGIA PLANTARUM, Issue 1 2008Dominique Driss-Ecole The GRAVI-1 experiment was brought on board the International Space Station by Discovery (December 2006) and carried out in January 2007 in the European Modular Cultivation System facility. For the first run of this experiment, lentil seedlings were hydrated and grown in microgravity for 15 h and then subjected for 13 h 40 min to centrifugal accelerations ranging from 0.29 × 10,2 g to 0.99 × 10,2 g. During the second run, seedlings were grown either for 30 h 30 min in microgravity (this sample was the control) or for 21 h 30 min and then subjected to centrifugal accelerations ranging from 1.2 × 10,2 g to 2.0 × 10,2 g for 9 h. In both cases, root orientation and root curvature were followed by time-lapse photography. Still images were downlinked in near real time to ground Norwegian User Support and Operations Center during the experiment. The position of the root tip and the root curvature were analyzed as a function of time. It has been shown that in microgravity, the embryonic root curved strongly away from the cotyledons (automorphogenesis) and then straightened out slowly from 17 to 30 h following hydration (autotropism). Because of the autotropic straightening of roots in microgravity, their tip was oriented at an angle close to the optimal angle of curvature (120°,135°) for a period of 2 h during centrifugation. Moreover, it has been demonstrated that lentil roots grown in microgravity before stimulation were more sensitive than roots grown in 1 g. In these conditions, the threshold acceleration perceived by these organs was found to be between 0 and 2.0 × 10,3 g and estimated punctually at 1.4 × 10,5 g by using the hyperbolic model for fitting the experimental data and by assuming that autotropism had no or little impact on the gravitropic response. Gravisensing by statoliths should be possible at such a low level of acceleration because the actomyosin system could provide the necessary work to overcome the activation energy for gravisensing. [source] |