| |||
Central United States (central + united_states)
Selected AbstractsLatitudinal variation in cold hardiness in introduced Tamarix and native PopulusEVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 4 2008Jonathan M. Friedman Abstract To investigate the evolution of clinal variation in an invasive plant, we compared cold hardiness in the introduced saltcedar (Tamarix ramosissima, Tamarix chinensis, and hybrids) and the native plains cottonwood (Populus deltoides subsp. monilifera). In a shadehouse in Colorado (41°N), we grew plants collected along a latitudinal gradient in the central United States (29,48°N). On 17 occasions between September 2005 and June 2006, we determined killing temperatures using freeze-induced electrolyte leakage and direct observation. In midwinter, cottonwood survived cooling to ,70°C, while saltcedar was killed at ,33 to ,47°C. Frost sensitivity, therefore, may limit northward expansion of saltcedar in North America. Both species demonstrated inherited latitudinal variation in cold hardiness. For example, from September through January killing temperatures for saltcedar from 29.18°N were 5,21°C higher than those for saltcedar from 47.60°N, and on September 26 and October 11, killing temperatures for cottonwood from 33.06°N were >43°C higher than those for cottonwood from 47.60°N. Analysis of nine microsatellite loci showed that southern saltcedars are more closely related to T. chinensis while northern plants are more closely related to T. ramosissima. Hybridization may have introduced the genetic variability necessary for rapid evolution of the cline in saltcedar cold hardiness. [source] The role of armadillos in the movement of archaeological materials: An experimental approachGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 4 2003Astolfo G. Mello Araujo Armadillos are medium-sized animals whose burrowing behavior can be significant in archaeological settings ranging from South America to the central United States. Although archaeologists are well aware that these animals can move archaeological materials across stratigraphic layers, few data are available about the magnitude of mixing, number of burrows per individual, dimension of burrows, and their impact on archaeological sites. This paper addresses the problem from an experimental perspective. Specifically, we monitored the action of the yellow armadillo (Euphractus sexcintus) in translocating cultural materials. Our results suggest that: (1) the vertical movement of artifacts has no preferential direction; (2) cultural horizons at least 20 cm apart can be mixed; (3) the animal's activity leaves some distinct traces that can be recognized during an excavation; and (4) there is no significant correlation between size, shape, or weight of artifacts and amount of displacement. © 2003 Wiley Periodicals, Inc. [source] Severe Deep Moist Convective Storms: Forecasting and MitigationGEOGRAPHY COMPASS (ELECTRONIC), Issue 1 2008David L. Arnold Small-scale (2,20 km) circulations, termed ,severe deep moist convective storms', account for a disproportionate share of the world's insured weather-related losses. Spatial frequency maximums of severe convective events occur in South Africa, India, Mexico, the Caucasus, and Great Plains/Prairies region of North America, where the maximum tornado frequency occurs east of the Rocky Mountains. Interest in forecasting severe deep moist convective systems, especially those that produce tornadoes, dates to 1884 when tornado alerts were first provided in the central United States. Modern thunderstorm and tornado forecasting relies on technology and theory, but in the post-World War II era interest in forecasting has also been driven by public pressure. The forecasting process begins with a diagnostic analysis, in which the forecaster considers the potential of the atmospheric environment to produce severe convective storms (which requires knowledge of the evolving kinematic and thermodynamic fields, and the character of the land surface over which the storms will pass), and the likely character of the storms that may develop. Improvements in forecasting will likely depend on technological advancements, such as the development of phased-array radar systems and finer resolution numerical weather prediction models. Once initiated, the evolution of deep convective storms is monitored by satellite and radar. Mitigation of the hazards posed by severe deep moist convective storms is a three-step process, involving preparedness, response, and recovery. Preparedness implies that risks have been identified and organizations and individuals are familiar with a response plan. Response necessitates that potential events are identified before they occur and the developing threat is communicated to the public. Recovery is a function of the awareness of local, regional, and even national governments to the character and magnitude of potential events in specific locations, and whether or not long-term operational plans are in place at the time of disasters. [source] Effects of drought on avian community structureGLOBAL CHANGE BIOLOGY, Issue 8 2010THOMAS P. ALBRIGHT Abstract Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigour or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989,2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation- and greenness-based metrics by abundance and species richness of the avian community overall, and of four behavioural guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32-week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implication of a more climatically variable future. [source] Consequences of shrub expansion in mesic grassland: Resource alterations and graminoid responsesJOURNAL OF VEGETATION SCIENCE, Issue 4 2003Michelle S. Lett Anon. (1986) Abstract. In the mesic grasslands of the central United States, the shrub Cornus drummondii has undergone widespread expansion in the absence of recurrent fire. We quantified alterations in light, water and N caused by C. drummondii expansion in tall-grass prairie and assessed the hypothesis that these alterations are consistent with models of resource enrichment by woody plants. Responses in graminoid species, particularly the dominant C4 grass Andropogon gerardii, were concurrently evaluated. We also removed established shrub islands to quantify their legacy effect on resource availability and assess the capability of this grassland to recover in sites formerly dominated by woody plants. The primary effect of shrub expansion on resource availability was an 87% reduction in light available to the herbaceous understorey. This reduced C uptake and N use efficiency in A. gerardii and lowered graminoid cover and ANPP at the grass-shrub ecotone relative to undisturbed grassland. Shrub removal created a pulse in light and N availability, eliciting high C gain in A. gerardii in the first year after removal. By year two, light and N availability within shrub removal areas returned to levels typical of grassland, as had graminoid cover and ANPP were similar to those in open grassland. Recovery within central areas of shrub removal sites lagged behind that at the former grass-shrub ecotone. These results indicate that the apparent alternative stable state of C. drummondii dominance in tall-grass prairie is biotically maintained and driven by reductions in light, rather than resource enrichment. Within areas of shrub removal, the legacy effect of C. drummondii dominance is manifest primarily through the loss of rhizomes of the dominant grasses, rather than any long-term changes in resource availability. C. drummondii removal facilitates grassland recovery, but the effort required to initiate this transition is a significant cost of woody plant expansion in mesic grasslands. Prevention of woody plant expansion in remnant tall-grass prairies is, therefore, a preferred management option. [source] Forebulge migration in the Cretaceous Western Interior basin of the central United StatesBASIN RESEARCH, Issue 1 2002T. White ABSTRACT This study combines stratigraphic evidence with geodynamic modelling to demonstrate that a forebulge played an identifiable role in Cenomanian,Turonian erosion and sediment accumulation in the North American Western Interior basin. The early to middle Turonian forebulge migrated progressively eastwards, and by the upper middle Turonian acted as a ,backstop' against which barrier islands formed in the axial basin. This paper focuses on the progressive migration of an unconformity on the forebulge. The lengthwise orogen-parallel orientation and time-transgressive orogen-normal migration of the forebulge unconformity are characteristics that differentiate it from unconformities developed on reactivated basement structures. We present a conceptual model in which the unconformity formed as the seafloor was uplifted by forebulge-related flexure to a water depth at which submarine bypass and erosion occurred. A numerical model that describes forebulge migration in response to load dispersal by erosion of the orogenic front and sedimentation into the foredeep indicates that the distance from the thrust front to the forebulge is within reasonable bounds established using a flexural rigidity of 3×1024 Nm. We identify architecturally similar, coeval unconformities from Montana to New Mexico, and interpret the similar distance from the thrust front to a point where each unconformity dissipates as indicative of a uniform lithospheric flexural response along the orogenic front. Here we ascribe cratonward (west-to-east) forebulge migration to erosional load redistribution, whereas orogen-parallel (north,south) stratigraphic climb of the forebulge unconformities developed in response to depocentre migration. Inherited lithospheric inhomogeneities may have allowed the forebulge in central Colorado to crest farther from the orogen than to the north and south. [source] Effect of Hydrologic Restoration and Lonicera maackii Removal on Herbaceous Understory Vegetation in a Bottomland Hardwood ForestRESTORATION ECOLOGY, Issue 3 2008Rebecca M. Swab Abstract Amur honeysuckle (Lonicera maackii (Rupr.) Herder), a large deciduous shrub from China, has invaded many forests in eastern/central United States. The species was removed by cutting and herbicide application from a recently hydrologically restored section of a bottomland hardwood forest in central Ohio, and the response of understory plants, especially herbaceous species, was measured. Plots were established in uncleared and cleared sections, and percent cover of each herbaceous understory species was estimated monthly. One season after several years of Lonicera removal efforts, no significant association was discovered between percentage of Lonicera cover and total understory species abundance. There was, however, a direct correlation between elevation and honeysuckle abundance; L. maackii abundance was negatively associated with low elevations, likely due to hydrologic factors. Plant species diversity (H) and richness (s) increased with elevation but were not significantly different on plots with honeysuckle removal (H = 0.86 ± 0.08 vs. 0.78 ± 0.09 and s = 4.4 ± 0.19 vs. 4.2 ± 0.2 species/m2, respectively) despite the fact that understory light levels measured by densiometer were significantly higher (,= 0.003) in cleared versus uncleared sections. Native and invasive species were found in similar proportions in the two sections, and significant sprouting and regrowth of L. maackii were observed throughout the cleared section. Although the removal of L. maackii altered the characteristics of the plant species assemblage, the value of this management remains questionable in the years immediately following treatment. [source] |