Cesead II Opaque Primer (cesead + ii_opaque_primer)

Distribution by Scientific Domains


Selected Abstracts


Adhesive bonding of titanium,aluminum,niobium alloy with nine surface preparations and three self-curing resins

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2003
Hiroaki Yanagida
The purpose of the current study was to evaluate the adhesive performance of metal conditioners when used for bonding between auto-polymerizing methacrylic resins and a titanium alloy. Disk specimens were cast from a titanium,aluminum,niobium (Ti,6Al,7Nb) alloy, air-abraded with alumina, and bonded with 24 combinations of eight metal conditioners (Acryl Bond, ACB; All-Bond 2 Primer B, ABB; Alloy Primer, ALP; Cesead II Opaque Primer, COP; Metafast Bonding Liner, MBL; Metal Primer II, MPII; MR Bond, MRB; Super-Bond liquid, SBL) and three autopolymerizing methacrylic resins (Repairsin, RE; Super-Bond C & B, SB; Tokuso Rebase; TR). Unprimed specimens were used as controls. Shear bond strengths were determined both before and after thermocycling (4,60°C, 20, 000 cycles). The ALP-SB group recorded the greatest post-thermocycling bond strength (21.8 MPa) followed by the COP-SB group (17.8 MPa) and the MPII-SB group. The post-thermocycling bond strengths of the unprimed-SB group and the ALP-RE group were statistically comparable. No significant differences were found among the nine TR resin groups, and these groups showed the lowest bond strength. In conclusion, the use of one of the three conditioners (ALP, COP, and MPII) in combination with the SB resin is recommended for bonding the Ti,6Al,7Nb alloy. [source]


Adhesive bonding of titanium nitride-plated stainless steel for magnetic attachments

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2001
Yohsuke Taira
The purpose of this study was to evaluate adhesive bonding of resin to titanium nitride ion-plated stainless steel in order for magnetic attachments to survive in the oral environment. Two primers, Cesead II Opaque Primer (CPII) and Metal Primer II (MPII), and one bonding agent, Super-Bond C&B (SB), were used. The surfaces of stainless steel disks were ground and then plated with titanium nitride. After the primer and SB resin were applied, a self-curing resin was bonded to the metal surfaces. Shear bond strengths were determined after 24 h of water storage and after 2,000 thermocycles. Titanium nitride ion-plated stainless steel showed bond strength comparable to the non-plated material. After thermocycling, all specimens of the group no primer/no SB were debonded. The bond strengths of groups CPII/no SB, MPII/no SB and no primer/SB were significantly lower bond strengths than groups CPII/SB and MPII/SB. An appropriate combination of primer and bonding agent should be selected when bonding a magnetic attachment to the denture base. [source]


Adhesive bonding of super-elastic titanium,nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive

JOURNAL OF ORAL REHABILITATION, Issue 6 2003
H. Matsumura
summary, The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium,nickel (Ti,Ni) alloy castings. Disk specimens were cast from a Ti,Ni alloy (Ti-50·85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41·5 for Ti,Ni, 30·4 for Ti and 19·5 for Ni, whereas those of the unprimed groups were 21·6 for Ti, 19·3 for Ti,Ni and 9·3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0·05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin,nickel interface. Durable bonding to super-elastic Ti,Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri- n -butylborane-initiated adhesive resin. [source]


Adhesive bonding of composite material to cast titanium with varying surface preparations

JOURNAL OF ORAL REHABILITATION, Issue 2 2002
H. Yanagida
The purpose of the present study was to evaluate the surface preparation effects of eight metal conditioners and an adhesive system on bonding between a prosthodontic composite material and cast titanium. Eight primers designed for conditioning base metal alloys (Acryl Bond, All-Bond 2 Primer B, Alloy Primer, Cesead II Opaque Primer, Eye Sight Opaque Primer, Metafast Bonding Liner, Metal Primer II, and MR Bond) as well as a surface modification technique (Siloc) were assessed. Disk specimens cast from titanium (T-Alloy H) were either primed with one of the eight primers or treated with the Siloc system, and then bonded with a light-activated composite material (Artglass). Bond durability was evaluated by thermocycling (4 and 60 °C, 1 min each, 20 000 cycles). After thermocycling, two groups either primed with the Cesead II Opaque Primer material or treated with the Siloc system exhibited significantly greater bond strength (20·0 and 19·0 MPa) than the other groups (0·2,12·6 MPa, P < 0·05). These two systems are considered to be useful for improving bonding between the titanium and the composite material tested. [source]