| |||
Cerebral Ganglia (cerebral + ganglion)
Selected AbstractsSearch for cerebral G cluster neurons responding to taste stimulation with seaweed in Aplysia kurodai by the use of calcium imagingDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003Ryusuke Yoshida Abstract The calcium imaging method can detect the spike activities of many neurons simultaneously. In the present experiments, this method was used to search for unique neurons contributing to feeding behavior in the cerebral ganglia of Aplysia kurodai. We mainly explored the neurons whose cell bodies were located in the G cluster and the neuropile region posterior to this cluster on the ventral surface of the cerebral ganglia. When the extract of the food seaweed Ulva was applied to the tentacle-lip region, many neurons stained with a calcium-sensitive dye, Calcium Green-1, showed changes in fluorescence. Some neurons showed rhythmic responses and others showed transient responses, suggesting that these neurons may be partly involved in the feeding circuits. We also identified three motor neurons among these neurons that showed rhythmic fluorescence responses to the taste stimulation. One of them was a motor neuron shortening the anterior tentacle (ATS), and the other two were motor neurons producing lip opening-like (LOG) and closing-like (LCG) movements, respectively. Application of the Ulva extract to the tentacle-lip region induced phase-locked rhythmic firing activity in these motor neurons, suggesting that these neurons may contribute to the rhythmic patterned movements of the anterior tentacles and lips during the ingestion of seaweed. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 299,314, 2003 [source] Some aspects of spiralian developmentACTA ZOOLOGICA, Issue 1 2010Claus Nielsen Abstract Nielsen, C. 2010. Some aspects of spiralian development. ,Acta Zoologica (Stockholm) 91: 20,28 Spiralian development is not only a characteristic early cleavage pattern, with shifting orientations of the cleavage planes, but also highly conserved cell lineages, where the origin of several organs can be traced back to identifiable cells in the lineage. These patterns are well documented in annelids, molluscs, nemertines, and platyhelminths and are considered ancestral of a bilaterian clade including these phyla. Spiral cleavage has not been documented in ecdysozoans, and no trace of the spiral development pattern is seen in phoronids and brachiopods. Origin of the spatial organization in spiralian embryos is puzzling, but much of the information appears to be encoded in the developing oocyte. Fertilization and "pseudofertilization" apparently provides the information defining the secondary, anterior-posterior body axis in many species. The central nervous system consists of three components: an apical organ, derived from the apical blastomeres 1a111 -1d111, which degenerates before or at metamorphosis; the cerebral ganglia derived from other blastomeres of the first micromere quartet and retained in the adult as a preoral part of the brain; and the originally circumblastoporal nerve cord, which has become differentiated into a perioral part of the brain, the paired or secondarily fused ventral nerve cords, and a small perianal nerve ring. [source] Larval and adult brains,EVOLUTION AND DEVELOPMENT, Issue 5 2005Claus Nielsen Summary Apical organs are a well-known structure in almost all ciliated eumetazoan larvae, although their function is poorly known. A review of the literature indicates that this small ganglion is the "brain" of the early larva, and it seems probable that it represents the brain of the ancestral, holopelagic ancestor of all eumetazoans, the gastraea. This early brain is lost before or at metamorphosis in all groups. Protostomes (excluding phoronids and brachiopods) appear to have brains of dual origin. Their larvae develop a pair of cephalic ganglia at the episphere lateral to the apical organ, and these two ganglia become an important part of the adult brain. The episphere and the cerebral ganglia show Otx expression, whereas Hox gene expression has not been seen in this part of the brain. A ventral nervous system develops around the blastopore, which becomes divided into mouth and anus by fusion of the lateral blastopore lips. The circumblastoporal nerve ring becomes differentiated into a nerve ring around the mouth, becoming part of the adult brain, a pair of ventral nerve cords, in some cases differentiated into a chain of ganglia, and a ring around the anus. This part of the nervous system appears to be homologous with the oral nerve ring of cnidarians. This interpretation is supported by the expression of Hox genes around the cnidarian mouth and in the ventral nervous system of the protostomes. The development of phoronids, brachiopods, echinoderms, and enteropneusts does not lead to the formation of an episphere or to differentiation of cerebral ganglia. In general, a well-defined brain is lacking, and Hox genes are generally not expressed in the larval organs, although this has not been well studied. [source] Observations of serotonin and FMRFamide-like immunoreactivity in palp sensory structures and the anterior nervous system of spionid polychaetesJOURNAL OF MORPHOLOGY, Issue 5 2008David L. Forest Abstract Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated ,tubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species. In addition, the distribution of serotonin (5-HT) and FMRFamide-like immunoreactivity was compared in the spionid polychaetes Dipolydora quadrilobata and Pygospio elegans. The distribution of serotonin immunoreactivity was also examined in the palps of Polydora cornuta and Streblospio benedicti. Serotonin immunoreactivity was concentrated in cells underlying the food groove of the palps, in the palp nerves, and in the cerebral ganglion. FMRFamide-like immunoreactivity was associated with the cerebral ganglia, nuchal organs and palp nerves, and also with the perikarya of ciliated sensory cells on the palps. J. Morphol., 2008. © 2007 Wiley-Liss, Inc. [source] What is convergent/homoplastic in Pogonophora?,JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 3 2000L. V. Salvini-Plawen Characters of Pogonophora, including Perviata (Frenulata and Scleronlinida) and Vestimentifera, are critically analysed and the characters re-evaluated with respect to their reliability in determining relationships with Annelida-Polychaeta in general and with Oweniidae in particular, as well as with Oligomera. In addition to several differentiations which possibly express parallelisms, only a few characters reflect trustworthy information based on the current state of knowledge. These, however, still include ,sets' of both Annelida-Polychaeta features and Oligomera features; despite the more recent trend to regard the Pogonophora as annelids, no unequivocal preference can be given as to which of these ,sets' is convergent/homoplastic. The intra-epithelial nervous system without true cerebral ganglia, typical of Epineuralia as well as Pogonophora and Oweniidae, is here considered to represent the paedomorphic peripheral-epidermal larval system of Gastroneuralia in contrast to the ganglionated gastroneural adult system. [source] Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous system of Aplysia californicaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2006Leonid L. Moroz Abstract The distribution of putative nitric oxide synthase (NOS)-containing cells in the opisthobranch mollusc Aplysia californica was studied by using NADPH-diaphorase (NADPH-d) histochemistry in the CNS and peripheral organs. Chemosensory areas (the mouth area, rhinophores, and tentacles) express the most intense staining, primarily in the form of peripheral highly packed neuropil regions with a glomerular appearance as well as in epithelial sensory-like cells. These epithelial NADPH-d-reactive cells were small and had multiple apical ciliated processes exposed to the environment. NADPH-d processes were also found in the salivary glands, but there was no or very little staining in the buccal mass and foot musculature. In the CNS, most NADPH-d reactivity was associated with the neuropil of the cerebral ganglia, with the highest density of glomeruli-like NADPH-d-reactive neurites in the areas of the termini and around F and C clusters. A few NADPH-d-reactive neurons were also found in other central ganglia, including paired neurons in the buccal, pedal, and pleural ganglia and a few asymmetrical neurons in the abdominal ganglion. The distribution patterns of NADPH-d-reactive neurons did not overlap with other known neurotransmitter systems. The highly selective NADPH-d labeling revealed here suggests the presence of NOS in sensory areas both in the CNS and the peripheral organs of Aplysia and implies a role for NO as a modulator of chemosensory processing. J. Comp. Neurol. 495:10,20, 2006. © 2006 Wiley-Liss, Inc. [source] Expression of synapsin and co-localization with serotonin and RFamide-like immunoreactivity in the nervous system of the chordoid larva of Symbion pandora (Cycliophora)INVERTEBRATE BIOLOGY, Issue 1 2010Ricardo Cardoso Neves Abstract. Cycliophora is one of the most recently described metazoan phyla and hitherto includes only two species: Symbion pandora and Symbion americanus. With a very complex life cycle, cycliophorans are regarded as an enigmatic group with an uncertain phylogenetic position, although they are commonly considered lophotrochozoan protostomes. In order to extend the database concerning the distribution of immunoreactive substances in the free-swimming chordoid larva of S. pandora, we investigated synapsin immunoreactivity using fluorescence-coupled antibodies in combination with confocal laserscanning microscopy. Moreover, we analyzed the co-localization patterns of synapsin, serotonin, and RFamide-like immunoreactivity in the chordoid larva by 3D imaging technology based on the confocal microscopy image stacks. Synapsin is expressed in large parts of the bilobed anterior cerebral ganglion including anterior and dorsal projections. Two pairs of ventral neurites run longitudinally into the larval body of which the inner pair shows only weak, scattered synapsin immunoreactivity. In addition, a lateral synapsin immunoreactive projection emerges posteriorly from each ventral longitudinal axon. Double immunostaining shows co-localization of synapsin and serotonin in the cerebral ganglion, the outer and the inner ventral neurites, and the anterior projections. Synapsin and RFamide-like immunoreactivity co-occur in the cerebral ganglion, the outer ventral neurites, and the dorsal projections. Accordingly, the cerebral ganglion and the outer ventral neurites are the only neural structures that co-express the two neurotransmitters and synapsin. The overall neuroanatomical condition of the cycliophoran chordoid larva resembles much more the situation of adult rather than larval life cycle stages of a number of spiralian taxa. [source] Observations of serotonin and FMRFamide-like immunoreactivity in palp sensory structures and the anterior nervous system of spionid polychaetesJOURNAL OF MORPHOLOGY, Issue 5 2008David L. Forest Abstract Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated ,tubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species. In addition, the distribution of serotonin (5-HT) and FMRFamide-like immunoreactivity was compared in the spionid polychaetes Dipolydora quadrilobata and Pygospio elegans. The distribution of serotonin immunoreactivity was also examined in the palps of Polydora cornuta and Streblospio benedicti. Serotonin immunoreactivity was concentrated in cells underlying the food groove of the palps, in the palp nerves, and in the cerebral ganglion. FMRFamide-like immunoreactivity was associated with the cerebral ganglia, nuchal organs and palp nerves, and also with the perikarya of ciliated sensory cells on the palps. J. Morphol., 2008. © 2007 Wiley-Liss, Inc. [source] Target-dependent modulation of neurotransmitter release in cultured Helix neurons involves adhesion moleculesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2001Mirella Ghirardi Abstract The secretory capabilities of the serotonergic neuron C1 of cerebral ganglion of Helix pomatia were markedly reduced when it was cultured in contact with the wrong target neuron, C3. When the neuron B2, one of its physiological targets, was micromanipulated within the network made of intermingled neurites originating from the axonal stumps of both C1 and C3 neurons, C1 increased the amount of the evoked transmitter release, which, after 30 min, reached the level observed when cocultured with the appropriate target. The removal of the appropriate target brought C1 back to the low release condition. By imaging C1 neurites with a fluorescent dye, morphological changes involving a local increase in the number of varicosities could be observed as early as 30 min after contact with the appropriate target. Monoclonal antibody 4E8 against apCAM, a family of Aplysia adhesion molecules, recognizes apCAM-like molecules of the Helix central nervous system on immunocytochemistry and Western blot analysis. The contact with the appropriate target previously incubated in a 4E8 solution, which did not interfere with its capacity to respond to serotonin, failed to increase the transmitter release of C1 cocultured in the presence of the wrong target, C3. These results suggest that the apCAM-like antigens bound to the target membrane participate in the molecular processes responsible for the assembly of the "release machinery" present in the functional presynaptic structure. J. Neurosci. Res. 65:111,120, 2001. © 2001 Wiley-Liss, Inc. [source] |