| |||
Cerebellar Neurons (cerebellar + neuron)
Selected AbstractsImplication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous systemJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Steve Poirier Abstract Neural apoptosis-regulated convertase-1/proprotein convertase subtilisin-kexin like-9 (NARC-1/PCSK9) is a proprotein convertase recently described to play a major role in cholesterol homeostasis through enhanced degradation of the low-density lipoprotein receptor (LDLR) and possibly in neural development. Herein, we investigated the potential involvement of this proteinase in the development of the CNS using mouse embryonal pluripotent P19 cells and the zebrafish as models. Time course quantitative RT,PCR analyses were performed following retinoic acid (RA)-induced neuroectodermal differentiation of P19 cells. Accordingly, the mRNA levels of NARC-1/PCSK9 peaked at day 2 of differentiation and fell off thereafter. In contrast, the expression of the proprotein convertases subtilisin kexin isozyme 1/site 1 protease and Furin was unaffected by RA, whereas that of PC5/6 and PC2 increased within and/or after the first 4 days of the differentiation period respectively. This pattern was not affected by the cholesterogenic transcription factor sterol regulatory element-binding protein-2, which normally up-regulates NARC-1/PCSK9 mRNA levels in liver. Furthermore, in P19 cells, RA treatment did not affect the protein level of the endogenous LDLR. This agrees with the unique expression pattern of NARC-1/PCSK9 in the rodent CNS, including the cerebellum, where the LDLR is not significantly expressed. Whole-mount in situ hybridization revealed that the pattern of expression of zebrafish NARC-1/PCSK9 is similar to that of mouse both in the CNS and periphery. Specific knockdown of zebrafish NARC-1/PCSK9 mRNA resulted in a general disorganization of cerebellar neurons and loss of hindbrain,midbrain boundaries, leading to embryonic death at ,,96 h after fertilization. These data support a novel role for NARC-1/PCSK9 in CNS development, distinct from that in cholesterogenic organs such as liver. [source] Xenobiotic response element binding enriched in both nuclear and microsomal fractions of rat cerebellumJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Nobuyuki Kuramoto Abstract Xenobiotic response element (XRE) is a core nucleotide sequence at the upstream of inducible target genes for the transcription factor aryl hydrocarbon receptor (AhR) that is responsible for signal transduction of exogenous environmental pollutants in eukaryotic cells. Immunoblotting analysis revealed the constitutive expression of AhR-related proteins in rat liver and brain, while specific binding of a radiolabelled probe containing XRE was detected in nuclear preparations of both liver and brain on gel retardation electrophoresis. Among discrete rat brain structures examined, cerebellum exhibited the highest XRE binding with less potent binding in hypothalamus, midbrain, medulla-oblongata, hippocampus, cerebral cortex and striatum. In contrast to liver and hippocampus, cerebellum also contained unusually higher XRE binding in microsomal fractions than that in either nuclear or mitochondrial fractions. Limited proteolysis by V8 protease did not markedly affect XRE binding in cerebellar nuclear extracts, with concomitant diminution of that in hepatic and hippocampal nuclear extracts. In primary cultured cerebellar neurons, indigo was effective in significantly increasing XRE binding only when determined immediately after sustained exposure for 120 min in the presence of high potassium chloride. These results suggest the abundance of as-yet unidentified proteins with high affinity for XRE and responsiveness to indigo in both nuclear and microsomal fractions of rat cerebellum. [source] Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2010Osamu Tao Abstract Mouse embryonic stem cells (ESCs) can generate cerebellar neurons, including Purkinje cells (PCs) and their precursor cells, in a floating culture system called serum-free culture of embryoid body-like aggregates (SFEB) treated with BMP4, Fgf8b, and Wnt3a. Here we successfully established a coculture system that induced the maturation of PCs in ESC-derived Purkinje cell (EDPC) precursors in SFEB, using as a feeder layer a cerebellum dissociation culture prepared from mice at postnatal day (P) 6,8. PC maturation was incomplete or abnormal when the adherent culture did not include feeder cells or when the feeder layer was from neonatal cerebellum. In contrast, EDPCs exhibited the morphology of mature PCs and synaptogenesis with other cerebellar neurons when grown for 4 weeks in coculture system with the postnatal cerebellar feeder. Furthermore, the electrophysiological properties of these EDPCs were compatible with those of native mature PCs in vitro, such as Na+ or Ca2+ spikes elicited by current injections and excitatory or inhibitory postsynaptic currents, which were assessed by whole-cell patch-clamp recordings. Thus, EDPC precursors in SFEB can mature into PCs whose properties are comparable with those of native PCs in vitro. © 2009 Wiley-Liss, Inc. [source] Activity of the lactate,alanine shuttle is independent of glutamate,glutamine cycle activity in cerebellar neuronal,astrocytic culturesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1-2 2005Lasse K. Bak Abstract The glutamate,glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia. Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate,alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471,479). The role of alanine in this context has been studied further using cerebellar neuronal cultures and corresponding neuronal,astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N -methyl- D -aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate,alanine shuttle to be assessed. [15N]Alanine (0.2 mM), [2- 15N]/[5- 15N]glutamine (0.25 mM), and [15N]ammonia (0.3 mM) were used as precursors and cell extracts were analyzed by mass spectrometry. Labeling from [15N]alanine in glutamine, aspartate, and glutamate in cerebellar cocultures was independent of depolarization of the neurons. Employing glutamine with the amino group labeled ([2- 15N]glutamine) as the precursor, an activity-dependent increase in the labeling of both glutamate and aspartate (but not alanine) was observed in the cerebellar neurons. When the amide group of glutamine was labeled ([5- 15N]glutamine), no labeling could be detected in the analyzed metabolites. Altogether, the results of this study support the existence of the lactate,alanine shuttle and the associated glutamate,glutamine cycle. No direct coupling of the two shuttles was observed, however, and only the glutamate,glutamine cycle seemed activity dependent. © 2004 Wiley-Liss, Inc. [source] Homeostasis of neuroactive amino acids in cultured cerebellar and neocortical neurons is influenced by environmental cuesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1-2 2005Helle Waagepetersen Abstract Neuronal function is highly influenced by the extracellular environment. To study the effect of the milieu on neurons from cerebellum and neocortex, cells from these brain areas were cultured under different conditions. Two sets of cultures, one neocortical and one cerebellar neurons, were maintained in media containing [U- 13C]glucose for 8 days at initial concentrations of 12 and 28 mM glucose, respectively. Other sets of cultures (8 days in vitro) maintained in a medium containing initially 12 mM glucose were incubated subsequently for 4 hr either by addition of [U- 13C]glucose to the culture medium (final concentration 3 mM) or by changing to fresh medium containing [U- 13C]glucose (3 mM) but without glutamine and fetal calf serum. 13C Nuclear magnetic resonance (NMR) spectra revealed extensive ,-aminobutyric acid (GABA) synthesis in both cultured neocortical and cerebellar neurons after maintenance in medium containing [U- 13C]glucose for 8 days, whereas no aspartate labeling was observed in these spectra. Mass spectrometry analysis, however, revealed high labeling intensity of aspartate, which was equal in the two types of neurons. Addition of [U- 13C]glucose (4 hr) on Day 8 in culture led to a similar extent of labeling of GABA in neocortical and in cerebellar cultures, but the cellular content of GABA was considerably higher in the neocortical neurons. The cellular content of alanine was similar regardless of culture type. Comparing the amount of labeling, however, cerebellar neurons exhibited a higher capacity for alanine synthesis. This is compatible with the fact that cerebellar neurons could ameliorate a low alanine content after culturing in low glucose (12 mM) by a 4-hr incubation in medium containing 3 mM glucose. A low glucose concentration during the culture period and a subsequent medium change were associated with decreases in glutathione and taurine contents. Moreover, glutamate and GABA contents were reduced in cerebellar cultures under either of these conditions. In neocortical neurons, the GABA content was decreased by simultaneous exposure to low glucose and change of medium. These conditions also led to an increase in the aspartate content in both types of cultures, although most pronounced in the neocortical neurons. Further experiments are needed to elucidate these phenomena that underline the impact of extracellular environment on amino acid homeostasis. © 2004 Wiley-Liss, Inc. [source] Single-chain variable fragment antibodies against the neural adhesion molecule CHL1 (close homolog of L1) enhance neurite outgrowthJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2002Ling Dong Abstract The neural cell adhesion molecule CHL1 (close homolog of L1) plays important roles in neurite outgrowth and neuronal survival in vitro. Reproducible and functionally active CHL1 antibodies are critical for a better understanding of the functional properties of CHL1 in vitro and in vivo. We have isolated human single-chain variable fragment (scFv) antibodies against mouse CHL1 from a human synthetic phage display library. To improve the binding activity of such antibodies, a clone (C12) was selected for affinity maturation by combined random mutagenesis of the VH gene and site-directed cassette mutagenesis to introduce random mutations in the complementarity determining region 3 (CDR3) of the VL gene. From the mutant phage display library, we selected a clone (6C2) that gave the strongest signal as determined by ELISA. The dissociation constant of 6C2 (Kd 2.28 × 10,8 M) was increased approximately 85-fold compared with the wild-type clone C12 (Kd 1.93 × 10,6 M). 6C2 detected CHL1 by Western blot analysis in mouse brain homogenates and detected CHL1 in CHL1-transfected cells by immunofluorescence. Furthermore, the wild-type and affinity-matured antibodies promoted neurite outgrowth of hippocampal and cerebellar neurons in vitro. Our results suggest that the affinity-matured CHL1 scFv antibody will serve a range of applications in vitro and in vivo. © 2002 Wiley-Liss, Inc. [source] Maturation-Dependent Alcohol Resistance in the Developing Mouse: Cerebellar Neuronal Loss and Gene Expression During Alcohol-Vulnerable and -Resistant PeriodsALCOHOLISM, Issue 8 2008Bahri Karaçay Background:, Alcohol abuse during pregnancy injures the fetal brain. One of alcohol's most important neuroteratogenic effects is neuronal loss. Rat models have shown that the cerebellum becomes less vulnerable to alcohol-induced neuronal death as it matures. We determined if maturation-dependent alcohol resistance occurs in mice and compared patterns of gene expression during the alcohol resistant and sensitive periods. Methods:, Neonatal mice received alcohol daily over postnatal day (PD) 2 to 4 or PD8 to 10. Purkinje cells and granule cells were quantified on PD25. The temporal expression patterns of 4 neuro-developmental genes and 3 neuro-protective genes in the cerebellum were determined daily over PD0 to 15 to determine how gene expression changes as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. The effect of alcohol on expression of these genes was determined when the cerebellum is alcohol sensitive (PD4) and resistant (PD10). Results:, Purkinje and granule cells were vulnerable to alcohol-induced death at PD2 to 4, but not at PD8 to 10. Acquisition of maturation-dependent alcohol resistance coincided with changes in the expression of neurodevelopmental genes. The vulnerability of cerebellar neurons to alcohol toxicity declined in parallel with decreasing levels of Math1 and Cyclin D2, markers of immature granule cells. Likewise, the rising resistance to alcohol toxicity paralleled increasing levels of GABA ,-6 and Wnt-7a, markers of mature granule neurons. Expression of growth factors and genes with survival promoting function (IGF-1, BDNF, and cyclic AMP response element binding protein) did not rise as the cerebellum transitioned from alcohol-vulnerable to alcohol-resistant. All 3 were expressed at substantial levels during the vulnerable period and were not expressed at higher levels later. Acute alcohol exposure altered the expression of neurodevelopmental genes and growth factor genes when administered either during the alcohol vulnerable period or resistant period. However, the patterns in which gene expression changed varied among the genes and depended on timing of alcohol administration. Conclusions:, Mice have a temporal window of vulnerability in the first week of life, during which cerebellar neurons are more sensitive to alcohol toxicity than during the second week. Expression of genes governing neuronal maturation changes in synchrony with the acquisition of alcohol resistance. Growth factors do not rise as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. Thus, a process intrinsic to neuronal maturation, rather than rising levels of growth factors, likely underlies maturation-dependent alcohol resistance. [source] Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cellsTHE JOURNAL OF PHYSIOLOGY, Issue 2 2007Marco J. Russo Neuronal firing patterns are determined by the cell's intrinsic electrical and morphological properties and are regulated by synaptic interactions. While the properties of cerebellar neurons have generally been studied in much detail, little is known about the unipolar brush cells (UBCs), a type of glutamatergic interneuron that is enriched in the granular layer of the mammalian vestibulocerebellum and participates in the representation of head orientation in space. Here we show that UBCs can be distinguished from adjacent granule cells on the basis of differences in membrane capacitance, input resistance and response to hyperpolarizing current injection. We also show that UBCs are intrinsically firing neurons. Using action potential clamp experiments and whole-cell recordings we demonstrate that two currents contribute to this property: a persistent TTX-sensitive sodium current and a ruthenium red-sensitive, TRP-like cationic current, both of which are active during interspike intervals and have reversal potentials positive to threshold. Interestingly, although UBCs are also endowed with a large Ih current, this current is not involved in their intrinsic firing, perhaps because it activates at voltages that are more hyperpolarized than those associated with autonomous activity. [source] |