| |||
Cellular Volume (cellular + volume)
Selected AbstractsCharacteristics of okadaic acid,induced cytotoxic effects in CHO K1 cellsENVIRONMENTAL TOXICOLOGY, Issue 6 2003C. Huynh-Delerme Abstract This article reports the results of investigations into the process of cell death induced in the Chinese hamster ovary cell K1 subclone (CHO K1) by okadaic acid (OA), a hydrophobic polyether produced by marine dinoflagellates. The IC50 was about 13 nM OA after 24 h of treatment, as determined using neutral red. With the MTT assay, the IC50 was 25 nM, although in this case 25% of the initial staining was still observed at 100 nM. Hoechst staining showed that mitotic figures accumulated at 12 nM OA after a 24- or 48-h treatment. In experiments limited to a 3-day treatment without changing the medium, CHO K1 cells were engaged in the death process at 50 nM OA after about 20 h and at 10 nM OA after 48 h. In many cells nuclear fragmentation that resulted in the apparent appearance of vesicles correlated with increasing cellular volume. But additional cell fragmentation was not observed with any treatment, and the chromatin material seemed to progressively disappear inside the cells. DNA fragmentation was analyzed by electrophoresis and with the TUNEL technique. With both techniques, the DNA was fragmented by 48 h in both 25 and 50 nM OA. Electrophoresis showed that both adherent and nonadherent cells were affected. Annexin-positive/ propidium iodide (PI),negative cells were rarely observed after OA treatment. Some were seen under the scanning cytometer after 20 h at 50 nM OA or after 48 h at 10 nM OA, but they were never detected by flow cytometry. Most of the time scanning cytometry showed either unstained cells or PI-positive (annexin-positive or -negative) cells (48 h, 50 nM, or 72 h, 10 nM). Flow cytometry cytograms showed two cell subpopulations: one composed of a majority of smaller cells, the other of larger cells. The larger cells markedly decreased with time and OA treatment (50 and 100 nM). Stained-cell counting showed that all cells that stained were both annexin- and PI positive and that most PI-positive cells were smaller. Ki67 antigen labeling showed the proliferative activity of CHO K1 cultures but also demonstrated the loss of this activity in smaller cells treated with 50 nM OA for 48 h. We concluded that in our culture conditions the main OA target within CHO K1 cultures was dividing cells. Our results suggest that cells with disturbed metaphase,anaphase enter apoptosis, leading to necrotic daughter cells. © 2003 Wiley Periodicals, Inc. Environ Toxicol 18: 383,394, 2003 [source] Mechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state,Computational simulationEPILEPSIA, Issue 11 2008Antônio-Carlos G. De Almeida Summary Purpose:, The aim of this work is to study, by means of computational simulations, the induction and sustaining of nonsynaptic epileptiform activity. Methods:, The computational model consists of a network of cellular bodies of neurons and glial cells connected to a three-dimensional (3D) network of juxtaposed extracellular compartments. The extracellular electrodiffusion calculation was used to simulate the extracellular potential. Each cellular body was represented in terms of the transmembrane ionic transports (Na+/K+ pumps, ionic channels, and cotransport mechanisms), the intercellular electrodiffusion through gap-junctions, and the neuronal interaction by electric field and the variation of cellular volume. Results:, The computational model allows simulating the nonsynaptic epileptiform activity and the extracellular potential captured the main feature of the experimental measurements. The simulations of the concomitant ionic fluxes and concentrations can be used to propose the basic mechanisms involved in the induction and sustaining of the activities. Discussion:, The simulations suggest: The bursting induction is mediated by the Cl, Nernst potential overcoming the transmembrane potential in response to the extracellular [K+] increase. The burst onset is characterized by a critical point defined by the instant when the Na+ influx through its permeable ionic channels overcomes the Na+/K+ pump electrogenic current. The burst finalization is defined by another critical point, when the electrogenic current of the Na+/K+ pump overcomes its influx through the channels. [source] Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucroseJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2007E.E. Tymczyszyn Abstract Aims:, Although the practical importance of adding sugars before drying is well known, the mechanism of protection of bacteria by sugars is not clear. The response of the dehydrated micro-organisms to rehydration is analysed in terms of structural and functional changes, and correlated with their potentiality to grow in rich media. These aspects are related with the membrane integrity and the metabolic state of the rehydrated bacteria, measured by means of surface properties and permeability. To attain this objective, Lactobacillus delbrueckii subsp. bulgaricus was dehydrated in the presence and in the absence of sucrose and trehalose. The bacterial response upon rehydration was investigated by determining: (i) the lag time of the bacterial growing in rich media, (ii) the restoration of the surface properties and the cellular volume and (iii) the membrane integrity. Methods and Results:,Lactobacillus delbrueckii subsp. bulgaricus was grown in MRS at 37°C overnight [De Man et al. (1960)J Appl Bacteriol 23, 130] and then dehydrated for 10, 20 and 30 min at 70°C in a vacuum centrifuge. The lag time of micro-organisms was determined by optical density changes after rehydration. The surface properties were determined by measuring the zeta potential of the bacteria suspended in aqueous solution. The cellular volume recovery was measured, after stabilization in saline solution, by light scattering and by the haematocrit method [Alemohammad and Knowles (1974)J Gen Microbiol 82, 125]. Finally, the membrane integrity has been determined by using specific fluorescent probes [SYTO 9 and propidium iodide, (PI)] that bind differentially depending on the integrity of the bacterial membrane. The lag time of Lact. delbrueckii subsp bulgaricus, dehydrated by heat in the presence of sucrose or trehalose and after that rehydrated, was significantly shortened, when compared with that obtained for bacteria dried in the absence of sugars. In these conditions, trehalose and sucrose maintained the zeta potential and the cell volume close to the control (nondried) cells. However, the membrane integrity, measured with fluorescent probes, was maintained only when cells were dehydrated for 10 min in the presence of sugars. For larger times of dehydration, the membrane integrity was not preserved, even in the presence of sugars. Conclusions:, When the micro-organisms are dehydrated in the absence of protectants, the membrane damage occurs with a decrease in the absolute value of the zeta potential and a decrease in the cellular volume recovered after rehydration. In contrast, when the zeta potential and the cellular volume are restored after rehydration to that corresponding to nondried cells, the micro-organisms are able to recover and grow with a reduced lag time. This can only be achieved when the dehydration is carried out in the presence of sugars. At short dehydration times, the response is associated with the preservation of the membrane integrity. However, for longer times of dehydration the zeta potential and volume recovery occurs in the presence of sugars in spite of a severe damage at membrane level. In this condition, cells are also recovered. In conclusion, to predict the ability of growing after dehydration, other bacterial structural parameters besides membrane integrity, such as zeta potential and cellular volume, should be taken into account. Significance and Impact of the Study:, The correlation of the lag time with the surface and permeability properties is of practical importance because the correlation of these two parameters with cell viability, allow to determine the potential bacterial capacity to grow in a rich medium after the preservation procedure, without necessity of performing a kinetic curve of growth, which is certainly time-consuming. [source] Glial cell-derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGFJOURNAL OF NEUROCHEMISTRY, Issue 2 2008Antje Wurm Abstract Astroglial cells are a source for gliotransmitters such as glutamate and ATP. We demonstrate here that gliotransmitters have autocrine functions in the regulation of cellular volume. Hypoosmotic stress in the presence of inflammatory mediators or oxidative stress, and during blockade or down-regulation of potassium channels, induces swelling of retinal glial cells. Vascular endothelial growth factor inhibits the osmotic swelling of glial cells in retinal slices or isolated cells. This effect was mediated by a kinase domain region/flk-1 receptor-evoked calcium dependent release of glutamate from glial cells, and subsequent stimulation of glial group I/II metabotropic glutamate receptors. Activation of kinase domain region/flk-1 or glutamate receptors evoked an autocrine swelling-inhibitory purinergic signaling cascade that was calcium-independent. This cascade involved the release of ATP and adenosine, and the activation of purinergic P2Y1 and adenosine A1 receptors, resulting in the opening of potassium and chloride channels and inhibition of cellular swelling. The glutamatergic-purinergic regulation of the glial cell volume may be functionally important in the homeostasis of the extracellular space volume during intense neuronal activation which is associated with a swelling of neuronal cell structures in the retina. However, glial cell-derived glutamate may also contribute to the swelling of activated neurons since metabolic poisoning of glial cells by iodoacetate inhibits the neuronal cell swelling mediated by activation of ionotropic glutamate receptors. [source] Derivated fetal haemoglobin as a marker for red cell age in the human fetus reflecting stimulated or impaired red blood cell productionPRENATAL DIAGNOSIS, Issue 7 2001Margriet Huisman Abstract We have determined whether derivated fetal haemoglobin (dHbF, consisting of glycated and acetylated HbF) can be used as a cell age marker for fetal red blood cells (RBCs). Cord blood was obtained between 19 and 39 weeks of gestation from 28 alloimmunised anaemic fetuses (23 RhD+ and 5,Kell) and from 20 non-anaemic fetuses and newborns (controls). Density gradient centrifugation was applied to 36 samples (20 RhD+, 15 controls and 1,Kell) to obtain fractions of increasing cell age. Blood samples were used for measurements of mean cellular volume (MCV), mean cell haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), pyruvate kinase activity (PK) and derivated fetal haemoglobin (dHbF) by cation-exchange HPLC. Reticulocytes were counted only in the whole blood samples. In all density gradient separated RBC fractions, the values for MCV, MCH and PK activity decreased and those of MCHC and dHbF increased with increasing density (equivalent to increasing cell age). The mean density was lower for RBCs of the anaemic RHD group (1.072±0.007,g/ml) than for the non-anaemic controls (1.077±0.005,g/ml) (p<0.05) The RBC density of the Kell sensitised fetus did not differ from those of the controls. In the control group, the values of the cell age markers in whole blood changed significantly with the gestational age, showing an increase of mean age of the erythrocyte population. The best linear relationship was found for dHbF (y=6.28+0.17*weeks; r=0.84; p<0.001). In the anaemic RhD+ fetuses, the RBC age markers did not change with gestational age; the dHbF percentages were lower, and the MCV, MCH, PK values and the reticulocyte counts were higher than in the controls (0.05 |