Cellular Transformation (cellular + transformation)

Distribution by Scientific Domains


Selected Abstracts


Mutational activation of the MAP3K8 protooncogene in lung cancer

GENES, CHROMOSOMES AND CANCER, Issue 2 2004
Adam Michael Clark
The MAP3K8 protooncogene (Cot/Tpl-2) activates the MAP kinase, SAP kinase, and NF-,B signaling pathways. MAP3K8 mutations occur in the rat homologue, but activating mutations have yet to be identified in primary human tumors. We have identified MAP3K8 as a transforming gene from a human lung adenocarcinoma and characterized a 3, end mutation in the cDNA. In addition, we confirmed that the mutation occurs in the original lung tumor, and we screened a series of lung cancer cell lines to determine whether the MAP3K8 mutation is a common occurrence in lung tumorigenesis. The oncogene was isolated and identified with the NIH3T3 nude mouse tumorigenicity assay and cDNA library screening. The gene was analyzed by polymerase chain reaction (PCR), single-strand conformational polymorphism (SSCP), and 3,RACE for mutations. The mutation was localized to MAP3K8 exon 8 and confirmed in the primary tumor DNA. Both wild-type and mutant MAP3K8 cDNAs transformed NIH3T3 cells, but the transforming activity of the mutant was much greater than that of the wild type. PCR-SSCP screening of cell line cDNAs identified one silent polymorphism in cell line SK-LU-1. Although we were unable to find additional activating mutations, these data support a role for MAP3K8 activity in cellular transformation, but suggest that mutational activation of the gene is a rare event in lung cancer. © 2004 Wiley-Liss, Inc. [source]


Differential control of apoptosis by DJ-1 in prostate benign and cancer cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
Yaacov Hod
Abstract DJ-1 is a conserved protein reported to be involved in diverse cellular processes ranging from cellular transformation, control of protein,RNA interaction, oxidative stress response to control of male infertility, among several others. Mutations in the human gene have been shown to be associated with an autosomal recessive, early onset Parkinson's disease (PARK7). The present study examines the control of DJ-1 expression in prostatic benign hyperplasia (BPH-1) and cancer (PC-3) cell lines in which DJ-1 abundance differs significantly. We show that while BPH-1 cells exhibit low basal level of DJ-1 expression, stress-inducing agents such as H2O2 and mitomycin C markedly increase the intracellular level of the polypeptide. In contrast, DJ-1 expression is relatively high in PC-3 cells, and incubation with the same cytotoxic drugs does not modulate further the level of the polypeptide. In correlation with the expression of DJ-1, both cytotoxic agents activate the apoptotic pathway in the prostatic benign cells but not in PC-3 cells, which are resistant to their action. We further demonstrate that incubation of BPH-1 cells with TNF-related-apoptosis-inducing-ligand/Apo-2L (TRAIL) also enhances DJ-1 expression and that TRAIL and H2O2 act additively to stimulate DJ-1 accumulation but synergistically in the activation of the apoptotic pathway. Time-course analysis of DJ-1 stimulation shows that while DJ-1 level increases without significant lag in TRAIL-treated cells, there is a delay in H2O2 -treated cells, and that the increase in DJ-1 abundance precedes the activation of apoptosis. Unexpectedly, over-expression of DJ-1 de-sensitizes BPH-1 cells to the action of apoptotic-inducing agents. However, RNA-interference-mediated silencing of DJ-1 expression results in sensitization of PC-3 cells to TRAIL action. These results are consistent with a model in which DJ-1 is involved in the control of cell death in prostate cell lines. DJ-1 appears to play a differential role between cells expressing a low but inducible level of DJ-1 (e.g., BPH-1 cells) and those expressing a high but constitutive level of the polypeptide (e.g., PC-3 cells). © 2004 Wiley-Liss, Inc. [source]


Different cellular localization, translocation, and insulin-induced phosphorylation of PKB, in HepG2 cells and hepatocytes

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002
Noor Afshan Syed
Abstract Protein kinase B (PKB), a serine/threonine protein kinase, prevents apoptosis and promotes cellular transformation. PKB activity is stimulated by insulin. In this report, we examined the relative amounts of expression, location, and translocation upon insulin stimulation of PKB, in normal primary hepatocytes and carcinoma cells, HepG2 cells. Non-phosphorylated PKB, was present in both types of unstimulated cells. The phosphorylated form of the enzyme was present in the nucleus of unstimulated HepG2 cells but not in normal hepatocytes. In the cytoplasm, PKB, was found in greater abundance in the hepatocytes as compared in HepG2 cells. Insulin induced the translocation of phosphorylated PKB, from the nucleus to the nuclear membrane in HepG2 cells. In contrast, insulin caused translocation and phosphorylation of PKB, from the cytosol to the plasma membrane in normal hepatocytes. In addition, there is a higher expression of PKB, in the HepG2 cells as compared to normal primary hepatocytes. These findings provide an important distinction between hepatocellular HepG2 cells and normal liver cells and suggest that the presence of constitutively active nuclear PKB in the transformed cells might be an important contributor in cell transformation and immortality of hepatoma cells. J. Cell. Biochem. 86: 118,127, 2002. © 2002 Wiley-Liss, Inc. [source]


STAT proteins: From normal control of cellular events to tumorigenesis,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2003
Valentina Calò
Signal transducers and activators of transcription (STAT) proteins comprise a family of transcription factors latent in the cytoplasm that participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis, and angiogenesis following cytokine, growth factor, and hormone signaling. STATs are activated by tyrosine phosphorylation, which is normally a transient and tightly regulates process. Nevertheless, several constitutively activated STATs have been observed in a wide number of human cancer cell lines and primary tumors, including blood malignancies and solid neoplasias. STATs can be divided into two groups according to their specific functions. One is made up of STAT2, STAT4, and STAT6, which are activated by a small number of cytokines and play a distinct role in the development of T-cells and in IFN, signaling. The other group includes STAT1, STAT3, and STAT5, activated in different tissues by means of a series of ligands and involved in IFN signaling, development of the mammary gland, response to GH, and embriogenesis. This latter group of STATS plays an important role in controlling cell-cycle progression and apoptosis and thus contributes to oncogenesis. Although an increased expression of STAT1 has been observed in many human neoplasias, this molecule can be considered a potential tumor suppressor, since it plays an important role in growth arrest and in promoting apoptosis. On the other hand, STAT3 and 5 are considered as oncogenes, since they bring about the activation of cyclin D1, c-Myc, and bcl-xl expression, and are involved in promoting cell-cycle progression, cellular transformation, and in preventing apoptosis. J. Cell. Physiol. 197: 157,168, 2003© 2003 Wiley-Liss, Inc. [source]


Cadherins in neural crest cell development and transformation

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2001
Patrick Pla
Cadherins constitute a superfamily of cell adhesion molecules involved in cell-cell interaction, histogenesis and cellular transformation. They have been implicated in the development of various lineages, including derivatives of the neural crest. Neural crest cells (NCC) emerge from the dorsal part of the neural tube after an epithelio-mesenchymal transition (EMT) and migrate through the embryo. After homing and differentiation, NCC give rise to many cell types, such as neurons, Schwann cells and melanocytes. During these steps, the pattern of expression of the various cadherins studied is very dynamic. Cadherins also display plasticity of expression during the transformation of neural crest cell derivatives. Here, we review the pattern of expression and the role of the main cadherins involved in the development and transformation of neural crest cell derivatives. © 2001 Wiley-Liss, Inc. [source]


Common and distinct mechanisms of different redox-active carcinogens involved in the transformation of mouse JB6P+ cells

MOLECULAR CARCINOGENESIS, Issue 7 2008
Sun Yang
Abstract We transformed JB6P+ cells with prolonged intermittent low-dose UVB radiation or prolonged exposure to low-dose H2O2 or CdCl2. Stable transformation was confirmed by an anchorage-independence assay. The JB6P+ transformants formed more colonies (,six folds) in soft agar as compared to their JB6P+ parent cells and were associated with increased intracellular reactive oxygen species (ROS) levels. Activating protein-1 (AP-1) is a family of transcription factors that are rapidly activated by elevated intracellular ROS levels, and their composition is important in the process of cellular transformation and/or tumor progression. To investigate if carcinogenesis induced by distinct carcinogens was via similar molecular mechanisms in these transformants, gel mobility shift and immunoblot analyses were utilized to determine the distinct AP-1 compositions. Compared to parent JB6P+ cells, the gain of JunB and Fra-1 in AP-1 DNA binding complexes was markedly increased in all transformed cells, which might contribute to a more proliferative phenotype, while loss of Fra-2 occurred in JB6P+/H2O2 and JB6P+/Cd cells. Differential AP-1 components in the transformants suggested that their transformations might be mediated by distinct transcription signalings with distinct AP-1 dimer compositions. However, all three transformants exhibited increased activation of pathways involved in cell proliferation (ERK/Fra-1/AP-1 and JNK/c- jun/AP-1) and anti-apoptosis (Bcl-xl). The development of the JB6P+ transformants (JB6P+/UVB; JB6P+/H2O2; JB6P+/Cd) provides a unique tool to study the mechanisms that contribute to different redox-active carcinogens in a single model. © 2007 Wiley-Liss, Inc. [source]


Precancerous carcinogenesis of human breast epithelial cells by chronic exposure to benzo[a]pyrene

MOLECULAR CARCINOGENESIS, Issue 5 2008
Nalin Siriwardhana
Abstract To understand carcinogenesis of human breast epithelial cells induced by chronic exposure to environmental pollutants, we studied biological and molecular changes in progression of cellular carcinogenesis induced by accumulated exposures to the potent environmental carcinogen benzo[a]pyrene (B[a]P). Increasing exposures of human breast epithelial MCF10A cells to B[a]P at picomolar concentrations resulted in cellular transformation from a noncancerous stage to precancerous substages, in which cells acquired the cancerous abilities of a reduced dependence on growth factors, anchorage-independent growth, and disruption in acini formation on reconstituted basement membranes. Using cDNA microarrays, we detected seven upregulated genes related to human cancers in B[a]P-transformed MCF10A cells. Using this model, we verified that green tea catechin significantly (P,<,0.05) suppressed B[a]P-induced carcinogenesis. Our studies indicate that this cellular model may serve as a cost-efficient, in vitro system, mimicking the chronic carcinogenesis of breast cells that likely occurs in early stages of carcinogenesis in vivo, to identify agents that inhibit cellular carcinogenesis. © 2007 Wiley-Liss, Inc. [source]


Loss of Betaig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells

MOLECULAR CARCINOGENESIS, Issue 2 2006
Yongliang Zhao
Abstract Betaig-h3 as a secreted protein induced by transforming growth factor-, has been suggested to modulate cell adhesion and tumor formation. Although we have previously shown that downregulation of Betaig-h3 gene is involved in the cellular transformation of human bronchial epithelial cells induced by radiation, its regulation in primary human lung cancers is not clearly understood. In this study, Betaig-h3 expression was studied in 130 primary human lung carcinomas by immunohistochemistry. Betaig-h3 protein was absent or reduced by more than two-fold in 45 of 130 primary lung carcinomas relative to normal lung tissues examined. Recovery of Betaig-h3 expression in H522 lung cancer cells lacking endogenous Betaig-h3 protein significantly suppressed their in vitro cellular growth and in vivo tumorigenicity. In addition, parental H522 cancer cells are resistant to the etoposide induced apoptosis compared with normal human bronchial epithelial cells. However, recovery of Betaig-h3 expression in H522 cancer cells results in significantly higher sensitivity to apoptotic induction than parental tumor cells. IGFBP3 is upregulated in Betaigh3-transfected H522 cells that may mediate the apoptotic sensitivity and antitumor function of Betaig-h3 gene. These observations demonstrate that downregulation of Betaig-h3 gene is a frequent event and related to the tumor progression in human lung cancer. © 2005 Wiley-Liss, Inc. [source]


Resveratrol attenuates 1,2-dimethylhydrazine (DMH) induced glycoconjugate abnormalities during various stages of colon carcinogenesis

PHYTOTHERAPY RESEARCH, Issue 8 2009
Murugan Sengottuvelan
Abstract Although a myriad of health promoting effects has been attributed to resveratrol (Res) (3,5,4,-trihydroxy- trans -stilbene), a phytoalexin, the most interesting is its anticancer property. The aim of this work was to elucidate the effectiveness of Res against cellular transformation (glycoconjugate alterations) initiated by 1,2-dimethylhydrazine (DMH), a colon specific carcinogen. Group 1 were control rats, group 2 were control rats that received Res (8 mg/kg body weight orally every day), rats in groups 3,6 were treated weekly with DMH (20 mg/kg body weight, subcutaneously × 15 times). In addition, groups 4,6 received Res (as in group 2) in three dietary regimens: initiation (I), post-initiation (PI) and entire period (EP). At the end of the 30 week experimental period in DMH alone exposed rats, altered levels of glycoconjugates (total hexoses, fucose, hexosamine and sialic acid) were observed in liver, intestine and colon tissues. Of the three dietary regimens of Res, the entire period supplementation significantly (p < 0.01) modulated the levels of glycoconjugates and reduced the incidence of adenoma and adenocarcinoma. These findings suggest that Res may extend its chemopreventive effect by restoring the alteration in glycoconjugates that are thought to be involved in the colonic malignant transformation process in this experimental model. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Nonsense-associated altered splicing of the Patched gene fails to suppress carcinogenesis in Gorlin syndrome

BRITISH JOURNAL OF DERMATOLOGY, Issue 1 2008
M. Laimer
Summary Mutations in the gene coding for the transmembrane receptor protein Patched (PTCH) are implicated in the autosomal dominant disorder Gorlin syndrome (also known as naevoid basal cell carcinoma syndrome), characterized by congenital abnormalities and cancer predisposition. Tumour promotion is thought to be associated with aberrant function of PTCH, leading to misregulation of the hedgehog signalling network. However, the transcriptional events that underlie the reduced tumour suppression effects of PTCH have not been studied in detail. We describe a patient with Gorlin syndrome who had three molecular aberrations resulting in biallelic disruption of the PTCH gene, leading to abnormal protein expression and development of basal cell carcinoma. Remarkably, within tumour cells, the somatic nonsense mutation G1019X was associated with activation of a cryptic splice donor site, in which an in-frame deletion of the exon sequence containing the nonsense mutation occurred. However, the function of the resulting PTCH protein variant was still compromised. The pathogenetic alterations described give insights into the sequence of events leading to cellular transformation and underscore the importance of the PTCH protein in skin homeostasis. [source]


Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells

CANCER SCIENCE, Issue 1 2010
Yoshitaka Sekido
Malignant mesothelioma (MM) is a tumor with poor prognosis associated with asbestos exposure. While it remains to be clarified how asbestos fibers confer genetic/epigenetic alterations and induce cellular transformation in normal mesothelial cells, the understanding of key molecular mechanisms of MM cell development, proliferation, and invasion has progressed. MM shows frequent genetic inactivation of tumor suppressor genes of p16INK4a/p14ARF and neurofibromatosis type 2 (NF2) which encodes Merlin, and epigenetic inactivation of RASSF1A. However, no frequent mutations of well-known oncogenes such as K-RAS and PIK3CA have been identified. Activation of multiple receptor tyrosine kinases including the epidermal growth factor receptor (EGFR) family and MET, and subsequent deregulations of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K),AKT signaling cascades are frequently observed in most MM cells. The tumor suppressive function of Merlin in MM cells is also being investigated by dissecting its possible downstream signaling cascade called the Hippo pathway. Further comprehensive delineation of dysregulated signaling cascades in MM cells will lead to identification of key addiction pathways for cell survival and proliferation of MM cells, which strongly promote establishment of a new molecular target therapy for MM. (Cancer Sci 2009) [source]