| |||
Cellular Resolution (cellular + resolution)
Selected AbstractsIdentification of novel markers expressed during fin regeneration by microarray analysis in medaka fishDEVELOPMENTAL DYNAMICS, Issue 9 2007Masanobu Nishidate Abstract Urodeles and fish have a remarkable ability to regenerate lost body parts, whereas many higher vertebrates, including mammals, retain only a limited capacity. It is known that the formation of specialized cell populations such as the wound epidermis or blastema is crucial for regeneration; however, the molecular basis for their formation has not been elucidated. Recently, approaches using differential display and microarray have been done in zebrafish for searching molecules involved in regeneration. Here, we used the medaka fish, a distantly diverged fish species, for microarray screening of transcripts up-regulated during regeneration. By setting criteria for selecting transcripts that are reliably and reproducibly up-regulated during regeneration, we identified 140 transcripts. Of them, localized in situ expression of 12 transcripts of 22 tested was detected either in differentiating cartilage, basal wound epidermis, or blastema. Our results provide useful molecular markers for dissecting the regeneration process at a fine cellular resolution. Developmental Dynamics 236:2685,2693, 2007. © 2007 Wiley-Liss, Inc. [source] Comprehensive expression atlas of fibroblast growth factors and their receptors generated by a novel robotic in situ hybridization platformDEVELOPMENTAL DYNAMICS, Issue 2 2005Murat Burak Yaylaoglu Abstract A recently developed robotic platform termed "Genepaint" can carry out large-scale nonradioactive in situ hybridization (ISH) on tissue sections. We report a series of experiments that validate this novel platform. Signal-to-noise ratio and mRNA detection limits were comparable to traditional ISH procedures, and hybridization was transcript-specific, even in cases in which probes could have hybridized to several transcripts of a multigene family. We established an atlas of expression patterns of fibroblast growth factors (Fgfs) and their receptors (Fgfrs) for the embryonic day 14.5 mouse embryo. This atlas provides a comprehensive overview of previously known as well as novel sites of expression for this important family of signaling molecules. The Fgf/Fgfr atlas was integrated into the transcriptome database (www.genepaint.org), where individual Fgf and Fgfr expression patterns can be interactively viewed at cellular resolution and where sites of expressions can be retrieved using an anatomy-based search. Developmental Dynamics 234:371,386, 2005. © 2005 Wiley-Liss, Inc. [source] Immunohistochemistry and in situ hybridization in the study of human skin melanocytesEXPERIMENTAL DERMATOLOGY, Issue 3 2007Thierry Passeron Abstract: Although keratinocytes are the most numerous type of cell in the skin, melanocytes are also key players as they produce and distribute melanin that protects the skin from ultraviolet (UV) radiation. In vitro experiments on melanocytic cell lines are useful to study melanogenesis and their progression towards melanoma. However, interactions of melanocytes with keratinocytes and with other types of cells in the skin, such as fibroblasts and Langerhans cells, are also crucial. We describe two techniques, immunohistochemistry (IHC) and tissue in situ hybridization (TISH), that can be used to identify and study melanocytes in the skin and their responses to UV or other stimuli in situ. We describe a practical method to localize melanocytic antigens on formalin-fixed, paraffin-embedded tissue sections and in frozen sections using indirect immunofluorescence with conjugated secondary antibodies. In addition, we detail the use of TISH and its combination with IHC to study mRNA levels of genes expressed in the skin at cellular resolution. This methodology, along with relevant tips and troubleshooting items, are important tools to identify and study melanocytes in the skin. [source] Facing the challenge of biosample imaging by FTIR with a synchrotron radiation sourceJOURNAL OF SYNCHROTRON RADIATION, Issue 1 2010Cyril Petibois Fourier-transform infrared (FTIR) synchrotron radiation (SR) microspectroscopy is a powerful molecular probe of biological samples at cellular resolution (<10,µm). As the brilliance of SR is 100,1000 times higher than that of a conventional Globar source, FTIR microscopes are now available in almost all advanced SR facilities around the world. However, in spite of this superior performance, the expected advances in IR SR microscopy have not yet been realised, particularly with regard to bio-analytical studies of single cells and soft tissues. In recent decades solid-state array detectors have revolutionized the fields of molecular spectroscopy and chemical imaging, and now new IR focal plane array detectors implemented at ultra-bright SR facilities will extend the performance and overcome the existing limitations, possibly allowing IR SR instrumentation to achieve the highest sensitivity and resolution of molecular imaging. The impact of IR imaging on large tissue area and the complexity of the analysis are discussed. In view of the high brilliance of SR sources, a comparison of published microscope images is given. Finally, it is briefly outlined how an optimized combination of IR instrumentation and SR optical systems could reach the expected advantages of a SR-based FTIR imaging system. [source] 2114: AO adapted to SD-OCTACTA OPHTHALMOLOGICA, Issue 2010W DREXLER Purpose Optical coherence tomography (OCT) has emerged as a leading technique in ophthalmic imaging due to its capability to non-invasively resolve tissue morphology with high sensitivity and high axial resolution. Despite increases in axial resolution, monochromatic ocular aberrations limited the transverse resolution for retinal imaging to ~20 ,m, which is too large for visualization of cellular structures. Adaptive optics (AO) may be used to correct such aberrations, leading to an improvement in image contrast and lateral resolution. Methods A successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allows for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. Results The capability of this imaging system is demonstrated through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, non-invasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds can be quantified for the first time. Conclusion AO OCT might provide opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases. Commercial interest [source] |