| |||
Cellular Homeostasis (cellular + homeostasi)
Selected AbstractsZebrafish dou yan mutation causes patterning defects and extensive cell death in the retinaDEVELOPMENTAL DYNAMICS, Issue 5 2007Anne E. Catalano Abstract The size of an organ is largely determined by the number of cells it contains, which in turn is regulated by two opposing processes, cell proliferation and cell death, however, it is generally not clear how cell proliferation and cell death are coordinated during development. Here, we characterize the zebrafish dou yanmi234 mutation that results in a dramatic reduction of retinal size and a disruption of retinal differentiation and lamination. The retinal size reduction is caused by increased retinal cell death in a non,cell-autonomous manner during early development. The phenotypic defect in dou yanmi234 arises coincident with the onset of retinal neurogenesis and differentiation. Interestingly, unlike many other small eye mutations, the mutation does not increase the level of cell death in the brain, suggesting that the brain and retina use different mechanisms to maintain cell survival. Identification and further study of the dou yan gene will enhance our understanding of the molecular mechanisms regulating retinal cellular homeostasis, i.e., the balance between cell proliferation and cell death. Developmental Dynamics 236:1295,1306, 2007. © 2007 Wiley-Liss, Inc. [source] THIS ARTICLE HAS BEEN RETRACTED Tn5530 from Burkholderia cepacia strain 2a encodes a chloride channel protein essential for the catabolism of 2,4-dichlorophenoxyacetic acidENVIRONMENTAL MICROBIOLOGY, Issue 1 2007Antonio Sebastianelli Summary Chloride channel proteins (ClC) are found in living systems where they transport chloride ions across cell membranes. Recently, the structure/function of two prokaryotic ClC has been determined but little is known about the role of these proteins in the microbial metabolism of chlorinated compounds. Here we show that transposon Tn5530 from Burkholderia cepacia strain 2a encodes a ClC protein (BcClC) which is responsible for expelling Cl, ions generated during the catabolism of 2,4-dichlorophenoxyacetic acid (a chlorinated herbicide). We found that BcClC has the ability to transport Cl, ions across reconstituted proteoliposome membranes. We created two mutants in which the intrachannel glutamate residue of the protein, known to be responsible for opening and closing the channel (i.e. gating), was changed in order to create constitutively open and closed forms. We observed that cells carrying the closed-channel protein accumulated Cl, ions intracellularly leading to a decrease in intracellular pH, cell stasis and death. Further, we established that BcClC has the same gating mechanism as that reported for the ClC protein from Salmonella typhimurium. Our results show that the physiological role of ClC is to maintain cellular homeostasis which can be impaired by the catabolism of chlorinated compounds. [source] How apoptosis got the immune system in shapeEUROPEAN JOURNAL OF IMMUNOLOGY, Issue S1 2007Christine Feig Abstract The discovery that apoptosis is an integral component of normal development has facilitated the widespread recognition that cell death is not at all inimical to life. For much of our lifetime the body maintains a cellular homeostasis persisting until, ultimately, it is broken during the aging process. However, unlike the body as a whole, fluctuations at any age in this cellular balance are frequent in the immune system, which responds to infections via massive clonal expansions and elimination of reactive T and B cells. Moreover, cell death also plays a key, and essential, role in the education of immune cells in the thymus and the bone marrow, where autoreactive cells are eliminated, thereby establishing tolerance to self tissues. Furthermore, the mechanism by which cytotoxic T and NK cells kill virus infected or transformed target cells is by inducing apoptotic cell death. Thus, cell death, and in particular apoptosis, is an integral facet of almost all aspects of immune function. Failure to execute apoptosis appropriately has dire consequences leading to the development of autoimmune disease and malignant growth. This narration provides a historical overview of the impact that the discovery of apoptosis had on the understanding of the function of the immune system. [source] Protein folding and disulfide bond formation in the eukaryotic cellFEBS JOURNAL, Issue 23 2009Denmark), Disulfide Bond Formation 2009 (Elsinore, Meeting report based on the presentations at the European Network Meeting on Protein Folding The endoplasmic reticulum (ER) plays a critical role as a compartment for protein folding in eukaryotic cells. Defects in protein folding contribute to a growing list of diseases, and advances in our understanding of the molecular details of protein folding are helping to provide more efficient ways of producing recombinant proteins for industrial and medicinal use. Moreover, research performed in recent years has shown the importance of the ER as a signalling compartment that contributes to overall cellular homeostasis. Hamlet's castle provided a stunning backdrop for the latest European network meeting to discuss this subject matter in Elsinore, Denmark, from 3 to 5 June 2009. Organized by researchers at the Department of Biology, University of Copenhagen, the meeting featured 20 talks by both established names and younger scientists, focusing on topics such as oxidative protein folding and maturation (in particular in the ER, but also in other compartments), cellular redox regulation, ER-associated degradation, and the unfolded protein response. Exciting new advances were presented, and the intimate setting with about 50 participants provided an excellent opportunity to discuss current key questions in the field. [source] The regulation of the endosomal compartment by p53 the tumor suppressor geneFEBS JOURNAL, Issue 8 2009Xin Yu The endosomal compartment of the cell is involved in a number of functions including: (a) internalizing membrane proteins to multivesicular bodies and lysosomes; (b) producing vesicles that are secreted from the cell (exosomes); and (c) generating autophagic vesicles that, especially in times of nutrient deprivation, supply cytoplasmic components to the lysosome for degradation and recycling of nutrients. The p53 protein responds to various stress signals by initiating a transcriptional program that restores cellular homeostasis and prevents the accumulation of errors in a cell. As part of this process, p53 regulates the transcription of a set of genes encoding proteins that populate the endosomal compartment and impact upon each of these endosomal functions. Here, we demonstrate that p53 regulates transcription of the genes TSAP6 and CHMP4C, which enhance exosome production, and CAV1 and CHMP4C, which produce a more rapid endosomal clearance of the epidermal growth factor receptor from the plasma membrane. Each of these p53-regulated endosomal functions results in the slowing of cell growth and division, the utilization of catabolic resources and cell-to-cell communication by exosomes after a stress signal is detected by the p53 protein. These processes avoid errors during stress and restore homeostasis once the stress is resolved. [source] Proteasome activation as a novel antiaging strategyIUBMB LIFE, Issue 10 2008Niki Chondrogianni Abstract Homeostasis is a key feature of cellular lifespan. Maintenance of cellular homeostasis influences the rate of aging and is determined by several factors, including efficient proteolysis of damaged proteins. Protein degradation is predominately catalyzed by the proteasome. Specifically, the proteasome is responsible for cell clearance of abnormal, denatured or in general damaged proteins as well as for the regulated degradation of short-lived proteins. As proteasome has an impaired function during aging, emphasis has been given recently in identifying ways of its activation. A number of studies have shown that the proteasome can be activated by genetic manipulations as well as by factors that affect its conformation and stability. Importantly the developed proteasome activated cell lines exhibit an extended lifespan. This review article discusses in details the various factors that are involved in proteasome biosynthesis and assembly and how they contribute to its activation. Finally as few natural compounds have been identified having proteasome activation properties, we discuss the advantages of this novel antiaging strategy. © 2008 IUBMB IUBMB Life, 60(10): 651,655, 2008 [source] A Drosophila Model of Mitochondrial DNA Replication: Proteins, Genes and RegulationIUBMB LIFE, Issue 8 2005Rafael Garesse Abstract Mitochondrial biogenesis is a critical process in animal development, cellular homeostasis and aging. Mitochondrial DNA replication is an essential part of this process, and both nuclear and mitochondrial DNA mutations are found to result in mitochondrial dysfunction that leads to developmental defects and delays, aging and disease. Drosophila provides an amenable model system to study mitochondrial biogenesis in normal and disease states. This review provides an overview of current approaches to study the proteins involved in mitochondrial DNA replication, the genes that encode them and their regulation. It also presents a survey of cell and animal models under development to mimic the pathophysiology of human mitochondrial disorders. IUBMB Life, 57: 555-561, 2005 [source] Functional analysis of CBP/p300 in embryonic orofacial mesenchymal cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2006D.R. Warner Abstract CREB binding protein (CBP) and the close structural homolog, p300, are nuclear coactivators of multiple signaling pathways that play important roles in embryonic development and cellular homeostasis. TGF, regulates the proliferation rate of many cell types and has been demonstrated to inhibit the growth rate of mouse embryonic maxillary mesenchymal (MEMM) cells. The role of CBP and p300 in TGF,-mediated control of proliferation of MEMM cells was thus investigated using an in vitro gene knockdown approach. TGF, reporter assays demonstrated that p300 mRNA knockdown via targeted siRNAs led to a reduction in the response to TGF,, whereas knockdown of CBP by the same approach had an insignificant effect. In MEMM cell proliferation assays, siRNA-mediated knockdown of CBP and/or p300 had little impact upon TGF,-mediated growth inhibition; however, the basal rate of proliferation was increased. Inhibition of p300 activity via overexpression of a dominant-negative mutant (p300,C/H3) led to significant inhibition of TGF,-mediated activation of p3TP-lux. As with the siRNA knockdown approach, p300,C/H3 also increased the basal rate of cell proliferation of MEMM cells. CBP/p300 siRNA knockdown had a significant but incomplete inhibition of TGF,-induction of matrix metalloproteinase-9 (gelatinase B) expression. These data demonstrate that p300 is involved in Smad-mediated transcription of p3TP-lux, however, its role (and that of CBP) in biological processes such as the control of cell proliferation and extracellular matrix metabolism is more complex and may be mediated via mechanisms beyond coactivator recruitment. J. Cell. Biochem. 99: 1374,1379, 2006. © 2006 Wiley-Liss, Inc. [source] Prostate carcinoma cells selected by long-term exposure to reduced oxygen tension show remarkable biochemical plasticity via modulation of superoxide, HIF-1, levels, and energy metabolismJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007Jeanne Bourdeau-Heller Cancer cells are able to tolerate levels of O2 that are damaging or lethal to normal cells; we hypothesize that this tolerance is the result of biochemical plasticity which maintains cellular homeostasis of both energy levels and oxidation state. In order to examine this hypothesis, we used different O2 levels as a selective agent during long-term culture of DU145 prostate cancer cells to develop three isogenic cell lines that grow in normoxic (4%), hyperoxic (21%), or hypoxic (1%) O2 conditions. Growth characteristics and O2 consumption differed significantly between these cell lines without changes in ATP levels or altered sensitivity to 2-deoxy- D -glucose, an inhibitor of glycolysis. O2 consumption was significantly higher in the hyperoxic line as was the level of endogenous superoxide. The hypoxic cell line regulated the chemical gradient of the proton motive force (PMF) independent of the electrical component without O2 -dependent changes in Hif-1, levels. In contrast, the normoxic line regulated Hif-1, without tight regulation of the chemical component of the PMF noted in the hypoxic cell line. From these studies, we conclude that selection of prostate cancer cells by long-term exposure to low ambient levels of O2 resulted in cells with unique biochemical properties in which energy metabolism, reactive oxygen species (ROS), and HIF-1, levels are modulated to allow cell survival and growth. Thus, cancer cells exhibit remarkable biochemical plasticity in response to various O2 levels. J. Cell. Physiol. 212:744,752, 2007. © 2007 Wiley-Liss, Inc. [source] Vitamin D receptor distribution in intestines of domesticated sheep Ovis ammon f. ariesJOURNAL OF MORPHOLOGY, Issue 2 2008Katharina Riner Abstract The biologically active form of vitamin D, i.e., 1,25-dihydroxycholecalciferol or calcitriol, plays an important role in bone metabolism and calcium homeostasis, which is often disturbed at the onset of lactation in high milk-yielding domestic ruminants. Gene transcription is modulated via vitamin D receptors, but nongenomic effects of vitamin D via membrane receptors have also been described. In the intestines, vitamin D promotes calcium absorption via vitamin D receptors. Vitamin D receptors are of clinical relevance, but have not been systematically assessed within all segments of the intestine in any species. Thus, we present for the first time an immunohistochemical study of the distribution patterns of the vitamin D receptor protein in sheep, which may be the basis for present and future investigations on mineral homeostasis in domestic ruminants. Tissue probes of the intestines were collected from five lambs and five nonlactating and nonpregnant dams, fixed in formalin, embedded in paraffin, and used for the assessment of vitamin D receptor protein. Nuclear vitamin D receptor immunoreaction was scored semiquantitatively and exhibited a segment-specific distribution pattern. Goblet cells always were devoid of any vitamin D receptor immunoreaction. Surface epithelial cells and enterocytes of the crypt openings generally demonstrated only a weak immunoreaction. Basally and/or intermediately located crypt epithelial cells exhibited stronger immunoreactions in duodenum, jejunum, and colon descendens. This basal/intermediate to superficial gradient was most pronounced in the duodenum and less evident in jejunum and colon descendens and not observed in ileum and cecum. There were no age-dependent variations in vitamin D receptor protein expression. Results demonstrate that intestinal vitamin D receptor distribution patterns are segment-specific and strongest immunoreactions correlate with highest intestinal calcium absorptive activities, as reported in literature. Strong expression of vitamin D receptors within the lower half of crypts also suggests a role for calcitriol in epithelial differentiation and cellular homeostasis. J. Morphol., 2008. © 2007 Wiley-Liss, Inc. [source] Role of calcium in the gating of isoproterenol-induced arylalkylamine N- acetyltransferase gene expression in the mouse pineal glandJOURNAL OF PINEAL RESEARCH, Issue 1 2006Mathieu Chansard Abstract:, Melatonin and its autonomic regulation serve important physiological functions. We recently demonstrated that stimulation of beta-adrenergic receptors only increases nighttime arylalkylamine N- acetyltransferase (Aa-Nat, the rate-limiting enzyme in melatonin synthesis) mRNA levels in mouse pineal gland in vitro, which suggests that pineal clocks may gate Aa-Nat gene expression. In the present study, our data reveal that cAMP analog increased Aa-Nat at any time of day but only in the presence of ionomycin. Using Fura-2AM in ratiometric calcium measurements, we show that isoproterenol stimulation increased intracellular free calcium levels at night, contrary to previous reports. Further, intra- or extracellular calcium depletion suppressed the isoproterenol-induced calcium responses as well as Aa-Nat gene expression. These results suggest calcium may be a critical factor in isoproterenol-induced Aa-Nat gene expression, which may be limited in the daytime. We also found that basal intracellular calcium levels were lower during the night and responses to isoproterenol and KCl depolarization were more robust. In addition, pineals of Cryptochrome mutant mice exhibited no significant difference between day and nighttime basal calcium or isoproterenol response. Together, these results suggest that basal calcium levels in the pineal may be controlled by the endogenous pineal clock, which may influence calcium dynamics, cellular homeostasis and sensitivity to external stimulation. Although the mechanism underlying Aa-Nat gene expression has been well studied, the role of calcium as a link between the pineal clock and Aa-Nat gene expression has been underestimated in rodent pineals. [source] Nutrigenomics,new approaches for human nutrition researchJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 8 2006Helen M Roche Abstract Food intake and nutrient exposure are key environmental factors involved in the pathogenesis and progression of the common polygenic, diet-related diseases. An individual's phenotype represents a complex interaction between the human genome and environmental factors during an individual's lifetime. This review explores the concept that there is a dynamic, two-way interaction between nutrition and the human genome which determines gene expression, the metabolic response and an individual's health status. It addresses the relevance of new high-throughput genomic, transcriptomic, proteomic and metabolomic technologies within human nutrition research. Common, polygenic, diet-related diseases (CVD, obesity, T2DM, etc.) reflect multiple genetic variants interacting with numerous environmental factors, each combination making a relatively small contribution to overall cellular homeostasis, whole body metabolism and health. This review highlights the value of a nutrigenomics-based systems biology approach to understanding human nutrition and identifying new biomarkers of nutrition and health. The challenge will be to develop and apply robust nutritional genomics research initiatives that are sensitive enough to take account of both human genetic heterogeneity and diverse nutrient exposure. If nutrigenomic approaches enhance our understanding of human nutrition at the molecular level, then it may be possible to apply a more targeted and effective personalized nutrition approach to attenuate the effect of risk factors associated with diet-related diseases. Indeed it could be proposed that a personalized nutrition approach may assist in improving the effectiveness of dietary guidelines/recommendations in general. Copyright © 2006 Society of Chemical Industry [source] Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4MOLECULAR MICROBIOLOGY, Issue 4 2008Peter Lee Summary Hsf1 and Msn2/Msn4 transcription factors in Saccharomyces cerevisiae play important roles in cellular homeostasis by activating gene expression in response to multiple stresses including heat shock, oxidative stress and nutrient starvation. Although it has been known that nuclear import of Msn2 is inhibited by PKA-dependent phosphorylation, the mechanism for PKA-dependent regulation of Hsf1 is not well understood. Here we demonstrate that Yak1 kinase, which is under the negative control of PKA, activates both Hsf1 and Msn2 by phosphorylation when PKA activity is lowered by glucose depletion or by overexpressing Pde2 that hydrolyses cAMP. We show that Yak1 directly phosphorylates Hsf1 in vitro, leading to the increase in DNA binding activity of Hsf1. We also demonstrate that Yak1 phosphorylates Msn2 in vitro, but does not affect DNA binding activity of Msn2 or nuclear localization of Msn2 upon glucose depletion. These results suggest a central role for Yak1 in mediating PKA-dependent inhibition of Hsf1 and Msn2/Msn4. [source] Plant programmed cell death: can't live with it; can't live without itMOLECULAR PLANT PATHOLOGY, Issue 4 2008BRETT WILLIAMS SUMMARY The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis. [source] Molecular and genetic aspects of plant responses to osmotic stressPLANT CELL & ENVIRONMENT, Issue 2 2002L. Xiong Abstract Drought, high salinity and freezing impose osmotic stress on plants. Plants respond to the stress in part by modulating gene expression, which eventually leads to the restoration of cellular homeostasis, detoxification of toxins and recovery of growth. The signal transduction pathways mediating these adaptations can be dissected by combining forward and reverse genetic approaches with molecular, biochemical and physiological studies. Arabidopsis is a useful genetic model system for this purpose and its relatives including the halophyte Thellungiella halophila, can serve as valuable complementary genetic model systems. [source] Remodeling of the SCF complex-mediated ubiquitination system by compositional alteration of incorporated F-box proteinsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2010Mitsunori Kato Abstract Ubiquitination regulates not only the stability but the localization and activity of substrate proteins involved in a plethora of cellular processes. The Skp1,Cullin,F-box protein (SCF) complexes constitute a major family of ubiquitin protein ligases, in each member of which an F-box protein serves as the variable component responsible for substrate recognition, thereby defining the function of each complex. Here we studied whether the composition of F-box proteins in the SCF complexes is remodeled under different conditions. We exploited stable isotope labeling and MS for relative quantification of F-box proteins in the SCF complexes affinity-purified en masse from budding yeast cells at log and post-diauxic phases, and revealed an increment of Saf1, an F-box protein involved in entry into quiescence, during the diauxic shift. Similarly, we found that Met4 overexpression induces a specific increment of Met30, the F-box protein responsible for ubiquitination of Met4. These results illustrate a cellular response to environmental and genetic perturbations through remodeling of the SCF complex-mediated ubiquitination system. Compositional alteration of incorporated F-box proteins may redirect the activity of this system toward appropriate substrates to be ubiquitinated under individual conditions for the maintenance of cellular homeostasis. [source] A role for ,/, T cells in a mouse model of fracture healingARTHRITIS & RHEUMATISM, Issue 6 2009Nona T. Colburn Objective Fractures can initiate an immune response that disturbs osteoblastic and osteoclastic cellular homeostasis through cytokine production and release. The aim of our study was to investigate ,/, T cells, innate lymphocytes known to be involved in tissue repair, as potential cellular components of the osteoimmune system's response to an in vivo model of bone injury. The absence of such cells or their effector cytokines influences the fate of other responder cells in proliferation, differentiation, matrix production, and ultimate callus formation. Methods Tibia fractures were created in 60 ,/, T cell,deficient mice (also called , T cell receptor [TCR],knockout mice) and 60 control C57BL/6 mice. Analysis included radiographs, basic histology, mechanical testing, flow cytometry, and immunohistochemical localization of ,/, TCR,positive subsets from control animals and of CD44 expression from both groups, as well as enzyme-linked immunosorbent assay for the effector cytokines interleukin-2 (IL-2), interferon-, (IFN,), and IL-6. Results Animals deficient in ,/, T cells demonstrated more mature histologic elements and quantitative increases in the expression of major bone (bone sialoprotein) and cartilage (type II collagen) matrix proteins and in the expression of bone morphogenetic protein 2 at a critical reparative phase. Moreover, only ,/, T cell,deficient animals had a decrease in the osteoprogenitor antiproliferative cytokines IL-6 and IFN, at the reparative phase. The result was improved stability at the repair site and an overall superior biomechanical strength in ,/, T cell,deficient mice compared with controls. Conclusion The evidence for a role of ,/, T cells in the context of skeletal injury demonstrates the importance of the immune system's effect on bone biology, which is relevant to the field of osteoimmunology, and offers a potential molecular platform from which to develop essential therapeutic strategies. [source] Nitrite reduction: a ubiquitous function from a pre-aerobic pastBIOESSAYS, Issue 8 2009Francesca Cutruzzolà Abstract In eukaryotes, small amounts of nitrite confer cytoprotection against ischemia/reperfusion-related tissue damage in vivo, possibly via reduction to nitric oxide (NO) and inhibition of mitochondrial function. Several hemeproteins are involved in this protective mechanism, starting with deoxyhemoglobin, which is capable of reducing nitrite. In facultative aerobic bacteria, such as Pseudomonas aeruginosa, nitrite is reduced to NO by specialized heme-containing enzymes called cd1 nitrite reductases. The details of their catalytic mechanism are summarized below, together with a hypothesis on the biological role of the unusual d1 -heme, which, in the reduced state, shows unique properties (very high affinity for nitrite and exceptionally fast dissociation of NO). Our results support the idea that the nitrite-based reactions of contemporary eukaryotes are a vestige of earlier bacterial biochemical pathways. The evidence that nitrite reductase activities of enzymes with different cellular roles and biochemical features still exist today highlights the importance of nitrite in cellular homeostasis. [source] Quantitative steps in symbiogenesis and the evolution of homeostasisBIOLOGICAL REVIEWS, Issue 3 2003S. A. L. M. KOOIJMAN ABSTRACT The merging of two independent populations of heterotrophs and autotrophs into a single population of mixotrophs has occurred frequently in evolutionary history. It is an example of a wide class of related phenomena, known as symbiogenesis. The physiological basis is almost always (reciprocal) syntrophy, where each species uses the products of the other species. Symbiogenesis can repeat itself after specialization on particular assimilatory substrates. We discuss quantitative aspects and delineate eight steps from two free-living interacting populations to a single fully integrated endosymbiotic one. The whole process of gradual interlocking of the two populations could be mimicked by incremental changes of particular parameter values. The role of products gradually changes from an ecological to a physiological one. We found conditions where the free-living, epibiotic and endobiotic populations of symbionts can co-exist, as well as conditions where the endobiotic symbionts outcompete other symbionts. Our population dynamical analyses give new insights into the evolution of cellular homeostasis. We show how structural biomass with a constant chemical composition can evolve in a chemically varying environment if the parameters for the formation of products satisfy simple constraints. No additional regulation mechanisms are required for homeostasis within the context of the dynamic energy budget (DEB) theory for the uptake and use of substrates by organisms. The DEB model appears to be closed under endosymbiosis. This means that when each free-living partner follows DEB rules for substrate uptake and use, and they become engaged in an endosymbiotic relationship, a gradual transition to a single fully integrated system is possible that again follows DEB rules for substrate uptake and use. [source] Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism Marinibacillus marinusACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2009Milya Davlieva Adenylate kinases (AKs; EC 2.7.4.3) are essential members of the NMP kinase family that maintain cellular homeostasis by the interconversion of AMP, ADP and ATP. AKs play a critical role in adenylate homeostasis across all domains of life and have been used extensively as prototypes for the study of protein adaptation and the relationship of protein dynamics and stability to function. To date, kinetic studies of psychrophilic AKs have not been performed. In order to broaden understanding of extremophilic adaptation, the kinetic parameters of adenylate kinase from the psychrophile Marinibacillus marinus were examined and the crystal structure of this cold-adapted enzyme was determined at 2.0,Å resolution. As expected, the overall structure and topology of the psychrophilic M. marinus AK are similar to those of mesophilic and thermophilic AKs. The thermal denaturation midpoint of M. marinus AK (321.1,K) is much closer to that of the mesophile Bacillus subtilis (320.7,K) than the more closely related psychrophile B. globisporus (316.4,K). In addition, the enzymatic properties of M. marinus AK are quite close to those of the mesophilic AK and suggests that M. marinus experiences temperature ranges in which excellent enzyme function over a broad temperature range (293,313,K) has been retained for the success of the organism. Even transient loss of AK function is lethal and as a consequence AK must be robust and be well adapted to the environment of the host organism. [source] Molecular Changes in Normal Appearing White Matter in Multiple Sclerosis are Characteristic of Neuroprotective Mechanisms Against Hypoxic InsultBRAIN PATHOLOGY, Issue 4 2003Ursula Graumann Multiple sclerosis is a chronic inflammatory disease of the CNS leading to focal destruction of myelin, still the earliest changes that lead to lesion formation are not known. We have studied the geneexpression pattern of 12 samples of normal appearing white matter from 10 post-mortem MS brains. Microarray analysis revealed upregulation of genes involved in maintenance of cellular homeostasis, and in neural protective mechanisms known to be induced upon ischemic preconditioning. This is best illustrated by the upregulation of the transcription factors such as HIF-1, and associated PI3K/Akt signalling pathways, as well as the upregulation of their target genes such as VEGF receptor 1. In addition, a general neuroprotective reaction against oxidative stress is suggested. These molecular changes might reflect an adaptation of cells to the chronic progressive pathophysiology of MS. Alternatively, they might also indicate the activation of neural protective mechanisms allowing preservation of cellular and functional properties of the CNS. Our data introduce novel concepts of the molecular pathogenesis of MS with ischemic preconditioning as a major mechanism for neuroprotection. An increased understanding of the underlying mechanisms may lead to the development of new more specific treatment to protect resident cells and thus minimize progressive oligondendrocyte and axonal loss. [source] Bacterial pathogens and the autophagic responseCELLULAR MICROBIOLOGY, Issue 1 2010María C. Lerena Summary The host cell recognition and removal of invading pathogens are crucial for the control of microbial infections. However, several microorganisms have developed mechanisms that allow them to survive and replicate intracellularly. Autophagy is an ubiquitous physiological pathway in eukaryotic cells, which maintains the cellular homeostasis and acts as a cell quality control mechanism to eliminate aged organelles and unnecessary structures. In addition, autophagy has an important role as a housekeeper since cells that have to get rid of invading pathogens use this pathway to assist this eradication. In this review we will summarize some strategies employed by bacterial pathogens to modulate autophagy to their own benefit and, on the other hand, the role of autophagy as a protective process of the host cell. In addition, we will discuss here recent studies that show the association of LC3 to a pathogen-containing compartment without a classical autophagic sequestering process (i.e. formation of a double membrane structure). [source] Mimicking small G-proteins: an emerging theme from the bacterial virulence arsenalCELLULAR MICROBIOLOGY, Issue 3 2008Neal M. Alto Summary The identification of the Ras superfamily of small molecular weight GTPases (G-proteins) has opened up new fields in cancer biology, immunity and infectious disease research. Because of their ubiquitous role in cellular homeostasis, small G-proteins are common targets for several pathogens, including bacteria. It is well known that pathogenic bacteria have evolved virulence factors that chemically modify GTPases or directly mimic the activities of key regulatory proteins. However, recent studies now suggest that bacterial ,effector' proteins can also mimic the activities of Ras small G-proteins despite their lack of guanine nucleotide binding or GTPase enzymatic activity. The study of these unique pathogenic strategies continues to reveal novel mechanistic insights into host cellular communication networks and the role of small G-protein signalling during human infectious disease. [source] Regulation of cell death during infection by the severe acute respiratory syndrome coronavirus and other coronavirusesCELLULAR MICROBIOLOGY, Issue 11 2007Yee-Joo Tan Summary Both apoptosis and necrosis have been observed in cells infected by various coronaviruses, suggesting that the regulation of cell death is important for viral replication and/or pathogenesis. Expeditious research on the severe acute respiratory syndrome (SARS) coronavirus, one of the latest discovered coronaviruses that infect humans, has provided valuable insights into the molecular aspects of cell-death regulation during infection. Apoptosis was observed in vitro, while both apoptosis and necrosis were observed in tissues obtained from SARS patients. Viral proteins that can regulate apoptosis have been identified, and many of these also have the abilities to interfere with cellular functions. Occurrence of cell death in host cells during infection by other coronaviruses, such as the mouse hepatitis virus and transmissible porcine gastroenteritis virus, has also being extensively studied. The diverse cellular responses to infection revealed the complex manner by which coronaviruses affect cellular homeostasis and modulate cell death. As a result of the complex interplay between virus and host, infection of different cell types by the same virus does not necessarily activate the same cell-death pathway. Continuing research will lead to a better understanding of the regulation of cell death during viral infection and the identification of novel antiviral targets. [source] Lipooligosaccharide-independent alteration of cellular homeostasis in Neisseria meningitidis -infected epithelial cellsCELLULAR MICROBIOLOGY, Issue 6 2005Robert A. Bonnah Summary Neisseria meningitidis (MC) is an important cause of meningitis and septic shock. Primary loose attachment of MC to host epithelial cells is mediated by type IV pili. Lipooligosaccharide (LOS), opacity (Opa) proteins and glycolipid adhesins facilitate subsequent tight attachment. MC infection causes numerous changes in host epithelial cell homeostasis. These include cortical plaque formation, increased expression of proinflammatory cytokines and alterations in host iron homeostasis. Using both biochemical and genetic approaches, we examined the role of LOS in mediating these events. We first examined specific cellular iron homeostasis changes that occur following addition of purified MC LOS to epithelial cells. Using an MC mutant that completely lacks LOS (MC lps tbp), we examined pili-mediated attachment and cortical plaque formation in human endocervical epithelial cells (A431). We also tested whether the lack of LOS alters cellular homeostasis, including changes in the levels of host stress response factors and proinflammatory cytokines. MC lps tbp elicited the formation of cortical plaques in A431 cells. However, the plaques were less pronounced than those formed by the MC parent. Surprisingly, the proinflammatory cytokine TNF, was upregulated during infection in MC lps tbp -infected cells. Furthermore, alterations in iron homeostasis, including lower transferrin receptor 1 (TfR-1) levels, altered TfR-1 trafficking, an ,iron-starvation' gene expression profile and low iron regulatory protein (IRP) binding activity are independent of LOS. Our results demonstrate that LOS is partially involved in both the attachment to host cells and formation of cortical plaques. However, TNF, induction and changes in iron homeostasis observed in MC-infected epithelial cells are independent of LOS. [source] 2233: Endoplasmic reticulum stress and inflammation signaling in RPE cellsACTA OPHTHALMOLOGICA, Issue 2010A SALMINEN Pathogenesis of AMD is linked to augmentation of cellular stress, e.g. oxidative and proteotoxic stress, hypoxia and inflammation. All these conditions trigger stress in endoplasmic reticulum (ER) and in that way can disturb the protein quality control in retinal pigment epithelial (RPE) cells. ER stress stimulates the unfolded protein response (UPR) via the activation of IRE1, PERK and ATF6 transducers. The UPR signaling can restore cellular homeostasis but chronic and overwhelming stress can induce inflammatory response via different UPR signaling pathways and lead to apoptotic cell death. Moreover, ER stress is a well-known inducer of vascular endothelial growth factor (VEGF) expression and in AMD, ER stress could provoke neovascularization and the conversion of dry form to wet counterpart. ER stress has a fundamental role in the pathogenesis of several diseases, e.g. in diabetes and neurodegenerative diseases. This lecture will review the recent advance in understanding the inducers of ER stress, present in RPE cells during AMD, and the possible role of ER stress in evoking inflammation and neovascularization during the pathogenesis of AMD. [source] |