Cellular Communication (cellular + communication)

Distribution by Scientific Domains


Selected Abstracts


Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005
Kelly L. Rogers
Abstract Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca2+ -sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260,7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable ,real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell,cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies. [source]


CELLULAR TOWER PROLIFERATION IN THE UNITED STATES

GEOGRAPHICAL REVIEW, Issue 1 2002
THOMAS A. WIKLE
ABSTRACT. Since the early 1980s the growing popularity of cellular communication has wrought dramatic landscape changes on the American scene through an invasion of thousands of cellular telephone towers. Objections raised to new tower construction by local residents, interest groups, and regulatory boards range from visual impacts to perceived health risks. This essay traces the origins of wireless telephony, its proliferation across the United States, and the visual impacts associated with tower construction. Three stages in the geographical expansion of wireless networks are identified. [source]


Regulation of signal transduction by glycosylation

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2004
Robert S. Haltiwanger
The incredible diversity found in cell-surface glycoconjugate structures led researchers over 30 years ago to propose that complexity in carbohydrates must play a role in cellular communication. Recent studies from a number of laboratories have confirmed this hypothesis, demonstrating that cell-surface glycoconjugates play significant roles in signal transduction events. One striking example is the effect of O -fucose modifications on the Notch-signalling pathway. Notch is a cell-surface receptor that is essential for proper development. The extracellular domain of Notch contains up to 36-tandem epidermal growth factor-like (EGF) repeats, many of which are predicted to be modified at putative consensus sequences with O -fucose and O -glucose saccharides. Genetic alterations (by knockout or RNAi methodologies) in the enzyme responsible for the addition of O -fucose to Notch, protein O -fucosyltransferase-1, result in severe, embryonic lethal phenotypes resembling Notch mutants. Thus, O -fucosylation appears to be essential for proper Notch function. Elongation of the O -fucose monosaccharide by the ,1,3- N -acetylglucosaminyltransferase, Fringe, modulates Notch function, either increasing or decreasing response from ligands depending on context. Although it is now clear that O -fucose modifications affect Notch signalling, the molecular mechanism by which this occurs is not known. As an initial step in understanding how O -fucose glycans affect Notch function, we are mapping O -fucose modifications to specific sites on Notch. Already, we have demonstrated that O -fucose modifies one of the EGF repeats involved in ligand binding, suggesting that the sugars may play a role in Notch,ligand interactions. Experiments to test the role of O -fucose modifications at specific sites are in progress. We have also found that Fringe modifies O -fucose on some EGF repeats but not others. Our initial analyses suggest that the basis of this specificity is encoded within the sequences of the individual EGF repeats. Site mapping has also confirmed the presence of O -glucose saccharides on Notch. The evolutionarily conserved, predicted O -glucose sites on Notch are as numerous as those for O -fucose, suggesting that the O -glucose modifications will play an equally important role in Notch biology. We have recently identified an enzymatic activity capable of catalyzing the addition of O -glucose to EGF repeats. Purification of the protein O -glucosyltransferase is underway. These and other results will be discussed. [source]


Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1

JOURNAL OF BIOPHOTONICS, Issue 4 2010
Gregory P. McNerney
Abstract Cell-cell interactions through direct contact are very important for cellular communication and coordination , especially for immune cells. The human immunodeficiency virus type I (HIV-1) induces immune cell interactions between CD4+ cells to shuttle between T cells via a virological synapse. A goal to understand the process of cell-cell transmission through virological synapses is to determine the cellular states that allow a chance encounter between cells to become a stable cell-cell adhesion. We demonstrate the use of optical tweezers to manipulate uninfected primary CD4+ T cells near HIV Gag-iGFP transfected Jurkat T cells to probe the determinants that induce stable adhesion. When combined with fast 4D confocal fluorescence microscopy, optical tweezers can be utilized not only to facilitate cell-cell contact, but also to simultaneously track the formation of a virological synapse, and ultimately to probe the events that precede virus transfer. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Dysregulated Cytokine Metabolism, Altered Hepatic Methionine Metabolism and Proteasome Dysfunction in Alcoholic Liver Disease

ALCOHOLISM, Issue 2005
Craig McClain
Abstract: Alcoholic liver disease (ALD) remains an important complication and cause of morbidity and mortality from alcohol abuse. Major developments in our understanding of the mechanisms of ALD over the past decade are now being translated into new forms of therapy for this disease process which currently has no FDA approved treatment. Cytokines are low molecular weight mediators of cellular communication, and the pro-inflammatory cytokine tumor necrosis factor (TNF) has been shown to play a pivotal role in the development of experimental ALD. Similarly, TNF levels are elevated in the serum of alcoholic hepatitis patients. Abnormal methionine metabolism is well documented in patients with ALD, with patients having elevated serum methionine levels, but low S-adenosylmethionine levels in the liver. On the other hand, S-adenosylhomocysteine and homocysteine levels are elevated in ALD. Recent studies have documented potential interactions between homocysteine and S-adenosylhomocysteine with TNF in the development of ALD. Altered proteasome function also is now well documented in ALD, and decreased proteasome function can cause hepatocyte apoptosis. Recently it has been shown that decreased proteasome function can also act synergistically to enhance TNF hepatotoxicity. Hepatocytes dying of proteasome dysfunction release pro-inflammatory cytokines such as Interleukin-8 to cause sustained inflammation. This article reviews the interactions of cytokines, altered methionine metabolism, and proteasome dysfunction in the development of ALD. [source]


A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling

PLANT BIOTECHNOLOGY JOURNAL, Issue 9 2008
Jean Louis Prioul
Summary The maize endosperm transcriptome was investigated through cDNA libraries developed at three characteristic stages: (i) lag phase [10 days after pollination (DAP)]; (ii) beginning of storage (14 DAP); and (iii) maximum starch accumulation rate (21 DAP). Expressed sequence tags for 711, 757 and 384 relevant clones, respectively, were obtained and checked manually. The proportion of sequences with no clear function decreased from 35% to 20%, and a large increase in storage protein sequences (i.e. 5% to 38%) was observed from stages (i) to (iii). The remaining major categories included metabolism (11%,13%), transcription,RNA processing,protein synthesis (13%,20%), protein destination (5%,9%), cellular communication (3%,9%) and cell rescue,defence (4%). Good agreement was generally found between category rank in the 10-DAP transcriptome and the recently reported 14-DAP proteome, except that kinases and proteins for RNA processing were not detected in the latter. In the metabolism category, the respiratory pathway transcripts represented the largest proportion (25%,37%), and showed a shift in favour of glycolysis at 21 DAP. At this stage, amino acid metabolism increased to 17%, whereas starch metabolism surprisingly decreased to 7%. A second experiment focused on carbohydrate metabolism by comparing gene expression at three levels (transcripts, proteins and enzyme activities) in relation to substrate or product from 10 to 40 DAP. Here, two distinct patterns were observed: invertases and hexoses were predominant at the beginning, whereas enzyme patterns in the starch pathway, at the three levels, anticipated and paralleled starch accumulation, suggesting that, in most cases, transcriptional control is responsible for the regulation of starch biosynthesis. [source]


Control of microbial attachment by inhibition of ATP and ATP-mediated autoinducer-2

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2010
Huijuan Xu
Abstract In this study, 2,4-dinitrophenol (DNP), a typical chemical uncoupler, was employed to investigate the possible roles of ATP and autoinducer-2 (AI-2) of suspended microorganisms in attachment onto nylon membrane and glass slide surfaces. Results showed that DNP could disrupt ATP synthesis, subsequently led to a reduced production of AI-2 which is a common signaling molecule for cellular communication. Attachment of suspended microorganisms exposed to DNP was significantly suppressed as compared to microorganisms without contact with DNP. These suggest that an energized state of suspended microorganisms would favor microbial attachment to both nylon membrane and glass slide surfaces. The extent of microbial attachment was found to be positively related to the AI-2 content of microorganisms. This study offers insights into the control of biofouling by preventing initial microbial attachment through inhibition of energy metabolism. Biotechnol. Bioeng. 2010;107: 31,36. © 2010 Wiley Periodicals, Inc. [source]